亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Alzheimer's disease diagnosis based on multiple cluster dense convolutional networks

人工智能 模式识别(心理学) 计算机科学 分割 判别式 卷积神经网络 上下文图像分类 聚类分析 预处理器 图像分割 分类器(UML) 图像(数学)
作者
Fan Li,Manhua Liu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:70: 101-110 被引量:158
标识
DOI:10.1016/j.compmedimag.2018.09.009
摘要

Alzheimer's disease (AD) is an irreversible neurodegenerative disorder with progressive impairment of memory and cognitive functions. Structural magnetic resonance images (MRI) play important role to evaluate the brain anatomical changes for AD Diagnosis. Machine learning technologies have been widely studied on MRI computation and analysis for quantitative evaluation and computer-aided-diagnosis of AD. Most existing methods extract the hand-craft features after image processing such as registration and segmentation, and then train a classifier to distinguish AD subjects from other groups. Motivated by the success of deep learning in image classification, this paper proposes a classification method based on multiple cluster dense convolutional neural networks (DenseNets) to learn the various local features of MR brain images, which are combined for AD classification. First, we partition the whole brain image into different local regions and extract a number of 3D patches from each region. Second, the patches from each region are grouped into different clusters with the K-Means clustering method. Third, we construct a DenseNet to learn the patch features for each cluster and the features learned from the discriminative clusters of each region are ensembled for classification. Finally, the classification results from different local regions are combined to enhance final image classification. The proposed method can gradually learn the MRI features from the local patches to global image level for the classification task. There are no rigid registration and segmentation required for preprocessing MRI images. Our method is evaluated using T1-weighted MRIs of 831 subjects including 199 AD patients, 403 mild cognitive impairment (MCI) and 229 normal control (NC) subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an accuracy of 89.5% and an AUC (area under the ROC curve) of 92.4% for AD vs. NC classification, and an accuracy of 73.8% and an AUC of 77.5% for MCI vs. NC classification, demonstrating the promising classification performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
CYL07完成签到 ,获得积分10
14秒前
23秒前
34秒前
乐乐应助科研通管家采纳,获得10
55秒前
情怀应助科研通管家采纳,获得10
55秒前
1分钟前
1分钟前
ysssp完成签到,获得积分10
1分钟前
桀骜发布了新的文献求助10
1分钟前
桀骜完成签到,获得积分10
1分钟前
2分钟前
PCX完成签到,获得积分10
2分钟前
13679981516完成签到,获得积分10
2分钟前
2分钟前
ronnie147完成签到 ,获得积分10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
Abdurrahman完成签到,获得积分10
3分钟前
3分钟前
Zoe完成签到,获得积分10
3分钟前
黄伊若完成签到 ,获得积分10
3分钟前
lsx关闭了lsx文献求助
3分钟前
无情的友容完成签到 ,获得积分10
3分钟前
DreamLly完成签到,获得积分10
3分钟前
友好冥王星完成签到 ,获得积分10
3分钟前
隐形傲霜完成签到 ,获得积分10
3分钟前
3分钟前
安静幻枫应助雪上一枝蒿采纳,获得10
4分钟前
力行发布了新的文献求助10
4分钟前
4分钟前
linshunan发布了新的文献求助10
4分钟前
归海梦岚完成签到,获得积分0
4分钟前
李爱国应助科研通管家采纳,获得10
4分钟前
言辞完成签到,获得积分10
5分钟前
andrele应助雪上一枝蒿采纳,获得10
5分钟前
Perry完成签到,获得积分10
5分钟前
陈好人发布了新的文献求助10
5分钟前
amengptsd完成签到,获得积分10
5分钟前
雪上一枝蒿完成签到,获得积分10
5分钟前
饱满涵蕾关注了科研通微信公众号
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353475
求助须知:如何正确求助?哪些是违规求助? 2978095
关于积分的说明 8683663
捐赠科研通 2659391
什么是DOI,文献DOI怎么找? 1456252
科研通“疑难数据库(出版商)”最低求助积分说明 674302
邀请新用户注册赠送积分活动 665016