A review of the use of laser-induced breakdown spectroscopy for bacterial classification, quantification, and identification

激光诱导击穿光谱 基质(水族馆) 光谱学 材料科学 环境科学 纳米技术 激光器 生物 光学 物理 生态学 量子力学
作者
Steven J. Rehse
出处
期刊:Spectrochimica Acta Part B: Atomic Spectroscopy [Elsevier]
卷期号:154: 50-69 被引量:52
标识
DOI:10.1016/j.sab.2019.02.005
摘要

The use of laser-induced breakdown spectroscopy to determine the elemental composition of bacterial cells has been described in the peer-reviewed literature since 2003. Fifteen years on, significant accomplishments have been reported that have served to clarify and underscore the areas of bacteriological investigation that LIBS is well-suited for as well as the challenges that yet remain to be faced. This review will attempt to summarize the state of the field by surveying the available body of knowledge. The early days of these experiments, roughly from 2003 to 2007, in which many of the most fundamental experiments were initially conducted will be described. The more in-depth investigations that followed in the subsequent decade will then be detailed. Many important aspects of performing LIBS on bacterial cells were reported on and are summarized here including: the use of chemometric algorithms for statistical classification of unknown spectra; the influence of the mounting substrate on classification; the effect of the testing gas atmosphere and the choice of bacterial cell growth nutrient medium on the measured LIBS spectrum; the efficacy of a LIBS-based test as a genus-level or strain–level discrimination test; the ability of LIBS to determine the cell titer or concentration of cells in the initial sample; the effects that possible contaminations or interferents within the sample would have on the LIBS spectrum; the influence that environmental stresses the cells may be exposed to during growth and the state of reproductive health of the cells could have on the LIBS spectrum; the use of standoff or remote apparatus to minimize the risk to the operators during bacteriological identification of unknown specimens; and the combination of other optical modalities with LIBS to enhance the sensitivity or specificity of identification. Lastly, tables are provided which summarize both every species of bacteria ever tested with LIBS as well as the major lessons learned by the community through 15 years of careful investigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
自信的完成签到,获得积分10
1秒前
Hello应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
hbzyydx46完成签到,获得积分10
2秒前
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
Hello应助害羞的山柏采纳,获得10
2秒前
haipronl应助科研通管家采纳,获得50
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
无花果应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
无花果应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
秋鱼完成签到,获得积分10
2秒前
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
曾经不言发布了新的文献求助10
2秒前
2秒前
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
核桃应助科研通管家采纳,获得30
3秒前
罗00发布了新的文献求助10
3秒前
3秒前
4秒前
阿米巴ing发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713351
求助须知:如何正确求助?哪些是违规求助? 5214914
关于积分的说明 15270516
捐赠科研通 4865125
什么是DOI,文献DOI怎么找? 2611873
邀请新用户注册赠送积分活动 1562074
关于科研通互助平台的介绍 1519318