LSAR: Multi-UAV Collaboration for Search and Rescue Missions

可扩展性 搜救 计算机科学 任务(项目管理) 新颖性 航程(航空) 功能(生物学) 实时计算 人工智能 机器人 数据库 工程类 航空航天工程 系统工程 哲学 生物 进化生物学 神学
作者
Ebtehal T. Alotaibi,Shahad Saleh AlQefari,Anis Koubâa
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 55817-55832 被引量:157
标识
DOI:10.1109/access.2019.2912306
摘要

In this paper, we consider the use of a team of multiple unmanned aerial vehicles (UAVs) to accomplish a search and rescue (SAR) mission in the minimum time possible while saving the maximum number of people. A novel technique for the SAR problem is proposed and referred to as the layered search and rescue (LSAR) algorithm. The novelty of LSAR involves simulating real disasters to distribute SAR tasks among UAVs. The performance of LSAR is compared, in terms of percentage of rescued survivors and rescue and execution times, with the max-sum, auction-based, and locust-inspired approaches for multi UAV task allocation (LIAM) and opportunistic task allocation (OTA) schemes. The simulation results show that the UAVs running the LSAR algorithm on average rescue approximately 74% of the survivors, which is 8% higher than the next best algorithm (LIAM). Moreover, this percentage increases with the number of UAVs, almost linearly with the least slope, which means more scalability and coverage is obtained in comparison to other algorithms. In addition, the empirical cumulative distribution function of LSAR results shows that the percentages of rescued survivors clustered around the [78%-100%] range under an exponential curve, meaning most results are above 50%. In comparison, all the other algorithms have almost equal distributions of their percentage of rescued survivor results. Furthermore, because the LSAR algorithm focuses on the center of the disaster, it finds more survivors and rescues them faster than the other algorithms, with an average of 55%~77%. Moreover, most registered times to rescue survivors by LSAR are bounded by a time of 04:50:02 with 95% confidence for a one-month mission time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野夏旋完成签到,获得积分10
1秒前
2秒前
小胖完成签到,获得积分10
2秒前
mitu完成签到 ,获得积分10
3秒前
3秒前
4秒前
舒心傲易完成签到,获得积分10
5秒前
颜陌发布了新的文献求助10
7秒前
7秒前
9秒前
醉烟雨发布了新的文献求助20
10秒前
研友_VZG7GZ应助无辜的朋友采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
wx2360ouc完成签到 ,获得积分10
14秒前
14秒前
JianYugen完成签到,获得积分10
15秒前
李子完成签到,获得积分10
15秒前
在望完成签到,获得积分10
16秒前
umil发布了新的文献求助10
18秒前
颜陌完成签到,获得积分10
19秒前
WSGQT完成签到,获得积分10
19秒前
20秒前
科研菜牙完成签到,获得积分20
21秒前
dsfsdf完成签到,获得积分10
21秒前
ting完成签到,获得积分10
22秒前
23秒前
科研菜牙发布了新的文献求助10
25秒前
27秒前
完美世界应助GO采纳,获得10
27秒前
29秒前
个性的紫菜应助Sun1c7采纳,获得20
31秒前
醉烟雨发布了新的文献求助10
33秒前
34秒前
光脚丫完成签到,获得积分10
34秒前
赘婿应助科研菜牙采纳,获得10
34秒前
37秒前
bkagyin应助淡淡菠萝采纳,获得10
37秒前
37秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140482
求助须知:如何正确求助?哪些是违规求助? 2791338
关于积分的说明 7798605
捐赠科研通 2447661
什么是DOI,文献DOI怎么找? 1302020
科研通“疑难数据库(出版商)”最低求助积分说明 626402
版权声明 601194