The use of anthropometric measures in the prediction of incident gout: results from a Swedish community-based cohort study

医学 人体测量学 痛风 队列 队列研究 物理疗法 内科学
作者
Per Wändell,Anna Andréasson,Hannes Hagström,Meliha C Kapetanovic,Axel C. Carlsson
出处
期刊:Scandinavian Journal of Rheumatology [Informa]
卷期号:48 (4): 294-299 被引量:7
标识
DOI:10.1080/03009742.2019.1583368
摘要

Objectives: To study associations between different anthropometric measures and incident gout, and to find the best predictive measure. Method: We used the baseline investigation from the Malmö Diet and Cancer study, excluding cases of prevalent gout (n = 28 081). Cox regression for each anthropometric measurement was calculated per standard deviation increment for men and women, with hazard ratios (HRs) and 95% confidence intervals (CIs), using a hospital diagnosis of incident gout (M10) during follow-up as the outcome. Incremental C-statistics for each anthropometric measure were used to determine the measure with the best predictive capacity, in models adjusted for age, socio-economic data, lifestyle factors, comorbidities, and antihypertensive medications. Results: The study population included 11 049 men and 17 032 women, with 633 incident gout cases, 393 in men (3.6%) and 240 in women (1.4%). For both men and women, the five anthropometric measurements with highest C-statistics were weight, body mass index (BMI), waist circumference (WC), hip circumference, and waist-to-height ratio; in men, the measurement with the highest C-statistic was BMI (0.7361; fully adjusted HR 1.52, 95% CI 1.39-1.68), and in women WC (0.8085; fully adjusted HR 1.62, 95% CI 1.46-1.81). The increment in C-statistic with anthropometric measures was good, around 0.035. Waist-to-hip ratio, waist-to-hip-to-height ratio, body fat percentages, and especially A Body Shape Index had lower C-statistics. Conclusions: Both BMI and WC showed good predictive ability for incident gout. The clinically used cut-offs for BMI and WC appeared to be relevant in the assessment of increased risk of gout.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
liudiqiu应助lh采纳,获得10
刚刚
命运的X号发布了新的文献求助10
刚刚
刚刚
满座关注了科研通微信公众号
1秒前
FashionBoy应助侦察兵采纳,获得10
1秒前
1秒前
个性尔槐完成签到,获得积分10
1秒前
esdeath完成签到,获得积分10
1秒前
13504544355完成签到 ,获得积分10
1秒前
陶醉的蜜蜂完成签到 ,获得积分10
1秒前
2秒前
坦率井完成签到,获得积分10
2秒前
2秒前
善学以致用应助代萌萌采纳,获得10
2秒前
2秒前
捉迷藏应助tengli采纳,获得10
2秒前
shirleeyeahe发布了新的文献求助10
2秒前
kunny完成签到,获得积分10
2秒前
2秒前
闻声完成签到,获得积分10
2秒前
zqfxc发布了新的文献求助10
4秒前
zhuxl完成签到,获得积分10
5秒前
威康宇宙完成签到,获得积分10
5秒前
5秒前
6秒前
cchen0902发布了新的文献求助10
6秒前
在水一方应助cmh采纳,获得10
6秒前
一年能吃800篇sci吗完成签到,获得积分10
6秒前
慕青应助ww采纳,获得10
6秒前
6秒前
6秒前
rosexu完成签到,获得积分10
7秒前
jhlz5879完成签到,获得积分10
7秒前
百宝发布了新的文献求助10
7秒前
Ye发布了新的文献求助10
7秒前
lalala应助搞怪网络采纳,获得20
8秒前
FashionBoy应助渝州人采纳,获得10
8秒前
8秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794