Role of Pore Chemistry and Topology in the CO2 Capture Capabilities of MOFs: From Molecular Simulation to Machine Learning

物理吸附 化学空间 表面改性 吸附 纳米技术 拓扑(电路) 材料科学 计算机科学 金属有机骨架 网络拓扑 机器学习 人工智能 化学 有机化学 数学 物理化学 药物发现 操作系统 组合数学 生物化学
作者
Ryther Anderson,Jacob Rodgers,Edwin Argueta,Achay Biong,Diego A. Gómez-Gualdrón
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:30 (18): 6325-6337 被引量:132
标识
DOI:10.1021/acs.chemmater.8b02257
摘要

Open framework materials (OFMs) such as metal–organic frameworks (MOFs) can provide structurally and chemically tailorable nanopores. This exceptional tunability has allowed for careful positioning of optimal adsorption sites within MOF pores to enable selective CO2 physisorption, making these materials promising for energy-efficient CO2 capture. However, given the multitude of features that can be simultaneously altered within the thousands of MOFs synthesized to date, it can be daunting to elucidate the most critical features for boosting CO2 capture capabilities. Here we use a multiscale approach—density functional theory (DFT), grand canonical Monte Carlo (GCMC), and machine learning (ML)—to investigate the role of various pore chemical and topological features in the enhancement of CO2 capture metrics of MOFs. To enable a thorough “sweep” of a target region of MOF structure-space, we used computational synthesis methods to create sets of MOFs encompassing all possible combinations of 16 topologies and 13 functionalized molecular building blocks. The adsorption of pure CO2, and CO2/H2 and CO2/N2 mixtures for the resulting 31 parent MOFs and its derivatives was then simulated, and CO2 capture metrics were calculated. Functionalization with hydroxyl, thiol, cyano, amino, or nitro chemistries was found to often improve CO2 capture metrics of the parent MOFs, but the efficacy of this strategy depended strongly on the pore topology. Decision trees were trained to predict the improvement or decline of CO2 capture metrics upon functionalization of parent MOFs, whereas five additional machine learning algorithms were trained to predict absolute metrics for all MOFs. The training of these algorithms allowed us to determine, without human bias, the relative importance of various pore chemical and structural/topological factors on the CO2 capture capabilities of MOFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
单薄凌蝶完成签到,获得积分10
1秒前
kingwill应助义气的雨旋采纳,获得20
1秒前
1秒前
壮观三颜完成签到,获得积分20
3秒前
jiang发布了新的文献求助10
3秒前
3秒前
3秒前
Na1s发布了新的文献求助10
4秒前
乐乐应助Devoted采纳,获得10
4秒前
所所应助Lan采纳,获得10
4秒前
erosion发布了新的文献求助10
4秒前
李爱国应助zhanghan采纳,获得10
5秒前
CodeCraft应助研友_ng9Mg8采纳,获得10
5秒前
喵了个咪发布了新的文献求助10
5秒前
十三发布了新的文献求助10
5秒前
5秒前
漂亮的毛巾完成签到,获得积分10
5秒前
6秒前
6秒前
ghq完成签到,获得积分10
6秒前
心想事陈应助清欢采纳,获得20
7秒前
qiqi完成签到,获得积分10
7秒前
7秒前
7秒前
王大萌完成签到 ,获得积分10
8秒前
壮观三颜发布了新的文献求助10
8秒前
小蘑菇发布了新的文献求助10
8秒前
六六发布了新的文献求助10
8秒前
yyf完成签到,获得积分10
9秒前
D_D发布了新的文献求助10
9秒前
Hiccup完成签到,获得积分10
10秒前
万能图书馆应助Fairy采纳,获得10
10秒前
一往之前发布了新的文献求助10
11秒前
11秒前
橘子发布了新的文献求助10
12秒前
12秒前
顾矜应助谦让路灯采纳,获得10
12秒前
abcdefg发布了新的文献求助10
12秒前
毛豆应助Wav采纳,获得10
12秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Population Genetics 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3495203
求助须知:如何正确求助?哪些是违规求助? 3080384
关于积分的说明 9163648
捐赠科研通 2773492
什么是DOI,文献DOI怎么找? 1522009
邀请新用户注册赠送积分活动 705636
科研通“疑难数据库(出版商)”最低求助积分说明 703000