In-situ encapsulation of Ni3S2 nanoparticles into N-doped interconnected carbon networks for efficient lithium storage

阳极 原位 纳米颗粒 兴奋剂 材料科学 锂(药物) 纳米技术 电极 化学工程 化学 光电子学 工程类 有机化学 医学 物理化学 内分泌学
作者
Jiabao Li,Jinliang Li,Zibiao Ding,Xinlu Zhang,Yuquan Li,Ting Lu,Yefeng Yao,Wenjie Mai,Likun Pan
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:378: 122108-122108 被引量:151
标识
DOI:10.1016/j.cej.2019.122108
摘要

Due to the conversion reaction induced high specific capacity, low cost and rich types, the interest on transition metal sulfides for efficient lithium storage has grown. Unfortunately, the intrinsically poor electrical conductivity and structure instability restrict their practical applications. Herein, an in-situ encapsulation strategy is developed to prepare the Ni3S2 nanoparticles encapsulated in interconnected N-doped porous carbon (Ni3S2@NC) through a facile freeze-drying approach and subsequent in-situ conversion. When evaluated as anode material for lithium-ion batteries (LIBs), the as-prepared Ni3S2@NC exhibits a remarkable lithium storage performance, including high reversible capacity (1335.4 mAh g−1 after 100 cycles at 0.1 A g−1), superior rate capability (507.7 mAh g−1 at 4 A g−1) and excellent long-term cycling stability (961.4 mAh g−1 after 600 cycles at 0.5 A g−1 and 862.8 mAh g−1 after 600 cycles at 1 A g−1), displaying one of the best lithium storage performances among the Ni3S2-based electrodes reported by now. Such an excellent lithium storage performance should be attributed to the unique structure advantages of Ni3S2@NC inherited from the in-situ encapsulation strategy, such as tight combination, increased electrical conductivity, shortened ion diffusion distance and buffering matrix provided by N-doped porous carbon networks. Importantly, the facile design and engineering strategy should also be applied to explore other nanoarchitectures to boost their lithium storage performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助Wl采纳,获得10
1秒前
共享精神应助橘笙采纳,获得10
2秒前
耍酷问兰发布了新的文献求助10
3秒前
科研通AI2S应助nczpf2010采纳,获得10
5秒前
搜集达人应助杜兰特工队采纳,获得10
10秒前
热心市民小红花应助牛马采纳,获得10
12秒前
热心市民小红花应助牛马采纳,获得10
12秒前
12秒前
Ava应助WJM采纳,获得10
16秒前
科研通AI2S应助nczpf2010采纳,获得10
17秒前
酷酷飞烟发布了新的文献求助10
17秒前
Bressanone发布了新的文献求助10
19秒前
李健的小迷弟应助老吴采纳,获得10
19秒前
大气的雅山完成签到,获得积分10
21秒前
shaoshao86完成签到,获得积分10
27秒前
27秒前
华仔应助科研通管家采纳,获得10
27秒前
逆时针应助科研通管家采纳,获得10
27秒前
MchemG应助科研通管家采纳,获得10
27秒前
研友_VZG7GZ应助科研通管家采纳,获得10
27秒前
wang应助科研通管家采纳,获得10
27秒前
wang应助科研通管家采纳,获得10
27秒前
ding应助科研通管家采纳,获得10
27秒前
上官若男应助科研通管家采纳,获得10
28秒前
思源应助科研通管家采纳,获得10
28秒前
田様应助科研通管家采纳,获得10
28秒前
小北发布了新的文献求助10
28秒前
NexusExplorer应助Quinna采纳,获得10
30秒前
31秒前
31秒前
量子星尘发布了新的文献求助10
33秒前
WJM发布了新的文献求助10
37秒前
老吴发布了新的文献求助10
38秒前
39秒前
佳语妍说完成签到,获得积分10
40秒前
41秒前
42秒前
酷波er应助平淡的凝竹采纳,获得10
43秒前
45秒前
小星星发布了新的文献求助10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989069
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253589
捐赠科研通 3269939
什么是DOI,文献DOI怎么找? 1804851
邀请新用户注册赠送积分活动 882074
科研通“疑难数据库(出版商)”最低求助积分说明 809073