In-situ encapsulation of Ni3S2 nanoparticles into N-doped interconnected carbon networks for efficient lithium storage

阳极 原位 纳米颗粒 兴奋剂 材料科学 锂(药物) 纳米技术 电极 化学工程 化学 光电子学 工程类 有机化学 医学 物理化学 内分泌学
作者
Jiabao Li,Jinliang Li,Zibiao Ding,Xinlu Zhang,Yuquan Li,Ting Lu,Yefeng Yao,Wenjie Mai,Likun Pan
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:378: 122108-122108 被引量:165
标识
DOI:10.1016/j.cej.2019.122108
摘要

Due to the conversion reaction induced high specific capacity, low cost and rich types, the interest on transition metal sulfides for efficient lithium storage has grown. Unfortunately, the intrinsically poor electrical conductivity and structure instability restrict their practical applications. Herein, an in-situ encapsulation strategy is developed to prepare the Ni3S2 nanoparticles encapsulated in interconnected N-doped porous carbon (Ni3S2@NC) through a facile freeze-drying approach and subsequent in-situ conversion. When evaluated as anode material for lithium-ion batteries (LIBs), the as-prepared Ni3S2@NC exhibits a remarkable lithium storage performance, including high reversible capacity (1335.4 mAh g−1 after 100 cycles at 0.1 A g−1), superior rate capability (507.7 mAh g−1 at 4 A g−1) and excellent long-term cycling stability (961.4 mAh g−1 after 600 cycles at 0.5 A g−1 and 862.8 mAh g−1 after 600 cycles at 1 A g−1), displaying one of the best lithium storage performances among the Ni3S2-based electrodes reported by now. Such an excellent lithium storage performance should be attributed to the unique structure advantages of Ni3S2@NC inherited from the in-situ encapsulation strategy, such as tight combination, increased electrical conductivity, shortened ion diffusion distance and buffering matrix provided by N-doped porous carbon networks. Importantly, the facile design and engineering strategy should also be applied to explore other nanoarchitectures to boost their lithium storage performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钟冬燕完成签到,获得积分10
刚刚
华仔应助ji采纳,获得10
刚刚
evacqy完成签到,获得积分10
1秒前
科研渣渣完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
独特的从露完成签到,获得积分10
2秒前
tongttt完成签到,获得积分10
2秒前
lunlun完成签到,获得积分10
3秒前
爆米花应助与非采纳,获得10
3秒前
3秒前
whc121完成签到,获得积分10
4秒前
wxs完成签到,获得积分10
4秒前
汉堡包应助标致的冷梅采纳,获得10
4秒前
绿L完成签到,获得积分10
4秒前
脑洞疼应助遇见采纳,获得10
5秒前
喜悦小土豆完成签到,获得积分10
5秒前
今后应助独特的从露采纳,获得10
6秒前
6秒前
6秒前
6秒前
田様应助yfn采纳,获得10
6秒前
脑洞疼应助wtl采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
所所应助沉潜采纳,获得10
7秒前
7秒前
故意的黄豆豆完成签到,获得积分10
8秒前
April完成签到 ,获得积分10
8秒前
可爱的函函应助黑胡椒采纳,获得30
8秒前
科研通AI6应助风轩轩采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836