化学
催化作用
氧化还原
密度泛函理论
氧气
催化氧化
空位缺陷
金属
无机化学
结晶学
计算化学
有机化学
作者
Eri Hayashi,Yui Yamaguchi,Keigo Kamata,Naoki Tsunoda,Yu Kumagai,Fumiyasu Oba,Masahiko Hara
摘要
Aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) as a bioplastics monomer is efficiently promoted by a simple system based on a nonprecious-metal catalyst of MnO2 and NaHCO3. Kinetic studies indicate that the oxidation of 5-formyl-2-furancarboxylic acid (FFCA) to FDCA is the slowest step for the aerobic oxidation of HMF to FDCA over activated MnO2. We demonstrate through combined computational and experimental studies that HMF oxidation to FDCA is largely dependent on the MnO2 crystal structure. Density functional theory (DFT) calculations reveal that vacancy formation energies at the planar oxygen sites in α- and γ-MnO2 are higher than those at the bent oxygen sites. β- and λ-MnO2 consist of only planar and bent oxygen sites, respectively, with lower vacancy formation energies. Consequently, β- and λ-MnO2 are likely to be good candidates as oxidation catalysts. On the other hand, experimental studies reveal that the reaction rates per surface area for the slowest step (FFCA oxidation to FDCA) decrease in the order of β-MnO2 > λ-MnO2 > γ-MnO2 ≈ α-MnO2 > δ-MnO2 > ε-MnO2; the catalytic activity of β-MnO2 exceeds that of the previously reported activated MnO2 by three times. The order is in good agreement not only with the DFT calculation results, but also with the reduction rates per surface area determined by the H2-temperature-programmed reduction measurements for MnO2 catalysts. The successful synthesis of high-surface-area β-MnO2 significantly improves the catalytic activity for the aerobic oxidation of HMF to FDCA.
科研通智能强力驱动
Strongly Powered by AbleSci AI