Classification of Chicken Parts Using a Portable Near-Infrared (NIR) Spectrophotometer and Machine Learning

主成分分析 近红外光谱 计算机科学 支持向量机 模式识别(心理学) 生物系统 人工智能 工艺工程 工程类 光学 物理 生物
作者
Irene Marivel Nolasco Pérez,Amanda Teixeira Badaró,Sylvio Barbon,Ana Paula Ayub da Costa Barbon,Marise Aparecida Rodrigues Pollonio,Douglas Fernandes Barbin
出处
期刊:Applied Spectroscopy [SAGE]
卷期号:72 (12): 1774-1780 被引量:59
标识
DOI:10.1177/0003702818788878
摘要

Identification of different chicken parts using portable equipment could provide useful information for the processing industry and also for authentication purposes. Traditionally, physical-chemical analysis could deal with this task, but some disadvantages arise such as time constraints and requirements of chemicals. Recently, near-infrared (NIR) spectroscopy and machine learning (ML) techniques have been widely used to obtain a rapid, noninvasive, and precise characterization of biological samples. This study aims at classifying chicken parts (breasts, thighs, and drumstick) using portable NIR equipment combined with ML algorithms. Physical and chemical attributes (pH and L*a*b* color features) and chemical composition (protein, fat, moisture, and ash) were determined for each sample. Spectral information was acquired using a portable NIR spectrophotometer within the range 900-1700 nm and principal component analysis was used as screening approach. Support vector machine and random forest algorithms were compared for chicken meat classification. Results confirmed the possibility of differentiating breast samples from thighs and drumstick with 98.8% accuracy. The results showed the potential of using a NIR portable spectrophotometer combined with a ML approach for differentiation of chicken parts in the processing industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助Simmer采纳,获得10
刚刚
刚刚
qqwwe完成签到,获得积分10
1秒前
2秒前
所所应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
Memory_H发布了新的文献求助10
2秒前
充电宝应助科研通管家采纳,获得30
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
坚定晓兰应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
苏日古嘎发布了新的文献求助10
3秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
kuikui1100发布了新的文献求助30
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得50
3秒前
Owen应助科研通管家采纳,获得30
3秒前
科研通AI6应助科研通管家采纳,获得50
3秒前
3秒前
深情的雪糕完成签到 ,获得积分10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
酱圤完成签到,获得积分10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
Hello应助www采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405125
求助须知:如何正确求助?哪些是违规求助? 4523421
关于积分的说明 14093529
捐赠科研通 4437096
什么是DOI,文献DOI怎么找? 2435492
邀请新用户注册赠送积分活动 1427695
关于科研通互助平台的介绍 1406012