主成分分析
近红外光谱
计算机科学
支持向量机
鸡胸脯
模式识别(心理学)
生物系统
人工智能
工艺工程
分析化学(期刊)
化学
色谱法
食品科学
工程类
光学
物理
生物
作者
Irene Marivel Nolasco Pérez,Amanda Teixeira Badaró,Sylvio Barbon,Ana Paula Ayub da Costa Barbon,Marise Aparecida Rodrigues Pollonio,Douglas Fernandes Barbin
标识
DOI:10.1177/0003702818788878
摘要
Identification of different chicken parts using portable equipment could provide useful information for the processing industry and also for authentication purposes. Traditionally, physical-chemical analysis could deal with this task, but some disadvantages arise such as time constraints and requirements of chemicals. Recently, near-infrared (NIR) spectroscopy and machine learning (ML) techniques have been widely used to obtain a rapid, noninvasive, and precise characterization of biological samples. This study aims at classifying chicken parts (breasts, thighs, and drumstick) using portable NIR equipment combined with ML algorithms. Physical and chemical attributes (pH and L*a*b* color features) and chemical composition (protein, fat, moisture, and ash) were determined for each sample. Spectral information was acquired using a portable NIR spectrophotometer within the range 900-1700 nm and principal component analysis was used as screening approach. Support vector machine and random forest algorithms were compared for chicken meat classification. Results confirmed the possibility of differentiating breast samples from thighs and drumstick with 98.8% accuracy. The results showed the potential of using a NIR portable spectrophotometer combined with a ML approach for differentiation of chicken parts in the processing industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI