类有机物
多细胞生物
生物
再生医学
药物发现
干细胞
干细胞生物学
计算生物学
神经科学
细胞生物学
生物信息学
细胞
遗传学
胚胎发生
胚胎
生殖技术
作者
Giuliana Rossi,Andrea Manfrin,Matthias P. Lütolf
标识
DOI:10.1038/s41576-018-0051-9
摘要
Tissue and organ biology are very challenging to study in mammals, and progress can be hindered, particularly in humans, by sample accessibility and ethical concerns. However, advances in stem cell culture have made it possible to derive in vitro 3D tissues called organoids, which capture some of the key multicellular, anatomical and even functional hallmarks of real organs at the micrometre to millimetre scale. Recent studies have demonstrated that organoids can be used to model organ development and disease and have a wide range of applications in basic research, drug discovery and regenerative medicine. Researchers are now beginning to take inspiration from other fields, such as bioengineering, to generate organoids that are more physiologically relevant and more amenable to real-life applications. Organoids are 3D structures derived from stem cells that recapitulate some key characteristics of real organs. The authors review recent progress in organoid derivation and applications and outline how advances in other disciplines might lead to more physiologically relevant organoids.
科研通智能强力驱动
Strongly Powered by AbleSci AI