Using particle swarm optimization in fuzzy association rules‐based feature selection and fuzzy ARTMAP‐based attack recognition

粒子群优化 计算机科学 入侵检测系统 特征选择 数据挖掘 分类器(UML) 人工智能 人工神经网络 恒虚警率 模糊逻辑 模式识别(心理学) 关联规则学习 遗传算法 机器学习
作者
Mansour Sheikhan,Maryam Sharifi Rad
出处
期刊:Security and Communication Networks [Hindawi Limited]
卷期号:6 (7): 797-811 被引量:10
标识
DOI:10.1002/sec.609
摘要

ABSTRACT Feature selection is a classic research topic in data mining, and it has attracted much interest in many fields such as network security. In addition, data mining approaches such as fuzzy association rule mining (FARM) can improve the performance of intrusion detection systems. In this study, a FARM‐based feature selector is proposed in order to reduce the dimension of input features to the misuse detector. Furthermore, a fuzzy ARTMAP neural network is used as the classifier. The accuracy of the proposed approach depends strongly on the precision of the parameters of FARM‐based feature selector module and fuzzy ARTMAP neural classifier. Particle swarm optimization (PSO) algorithm is incorporated into the proposed method to determine optimum values of parameters. In this way, the performance of PSO algorithm is compared with genetic algorithm (GA), as well. Experimental results indicate that PSO outperforms GA both in population size and number of evolutions and can converge faster. This is very important for enhancing the mining performance in large datasets such as intrusion detection datasets. When compared with some other machine learning methods, the proposed system indicates better performance in terms of detection rate, false alarm rate, and cost per example. Copyright © 2012 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助11111采纳,获得10
1秒前
星辰大海应助环糊精采纳,获得10
2秒前
katu发布了新的文献求助10
3秒前
小小完成签到,获得积分10
4秒前
於依白发布了新的文献求助20
4秒前
zyz完成签到,获得积分10
6秒前
落日游云完成签到,获得积分10
6秒前
洁净的士晋完成签到,获得积分10
7秒前
科研通AI2S应助墨瞳采纳,获得10
7秒前
8秒前
挽风完成签到 ,获得积分10
10秒前
10秒前
11秒前
搜集达人应助迷路凡蕾采纳,获得10
11秒前
清新晨发布了新的文献求助10
12秒前
CodeCraft应助katu采纳,获得10
12秒前
阿橘完成签到,获得积分10
13秒前
14秒前
14秒前
tgd发布了新的文献求助10
15秒前
15秒前
15秒前
钱念波完成签到 ,获得积分10
16秒前
rong发布了新的文献求助10
18秒前
ly发布了新的文献求助10
18秒前
plant完成签到,获得积分10
20秒前
甄遥发布了新的文献求助10
21秒前
22秒前
小肥仔发布了新的文献求助30
22秒前
反杀闰土的猹完成签到 ,获得积分10
25秒前
罗又柔应助项目采纳,获得10
26秒前
小蘑菇应助小丸子采纳,获得10
28秒前
28秒前
星辰大海应助weiyu_u采纳,获得30
29秒前
慕青应助单纯的凝芙采纳,获得10
30秒前
30秒前
呱呱完成签到,获得积分10
31秒前
JamesPei应助HC采纳,获得10
31秒前
33秒前
麻辣烫完成签到 ,获得积分10
33秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138303
求助须知:如何正确求助?哪些是违规求助? 2789341
关于积分的说明 7790881
捐赠科研通 2445588
什么是DOI,文献DOI怎么找? 1300593
科研通“疑难数据库(出版商)”最低求助积分说明 625975
版权声明 601065