Bayesian Model for Multiple Change-points Detection in Multivariate Time Series

离群值 系列(地层学) 多元统计 贝叶斯概率 计算机科学 Lasso(编程语言) 高斯分布 算法 时间序列 变更检测 模式识别(心理学) 数学 人工智能 机器学习 古生物学 物理 量子力学 万维网 生物
作者
Flore Harlé,Florent Chatelain,Cédric Gouy‐Pailler,Sophie Achard
摘要

This paper addresses the issue of detecting change-points in multivariate time series. The proposed approach differs from existing counterparts by making only weak assumptions on both the change-points structure across series, and the statistical signal distributions. Specifically change-points are not assumed to occur at simultaneous time instants across series, and no specific distribution is assumed on the individual signals. It relies on the combination of a local robust statistical test acting on individual time segments, with a global Bayesian framework able to optimize configurations from multiple local statistics (from segments of a unique time series or multiple time series). Using an extensive experimental set-up, our algorithm is shown to perform well on Gaussian data, with the same results in term of recall and precision as classical approaches, such as the fused lasso and the Bernoulli Gaussian model. Furthermore, it outperforms the reference models in the case of non normal data with outliers. The control of the False Discovery Rate by an acceptance level is confirmed. In the case of multivariate data, the probabilities that simultaneous change-points are shared by some specific time series are learned. We finally illustrate our algorithm with real datasets from energy monitoring and genomic. Segmentations are compared to state-of-the-art approaches based on fused lasso and group fused lasso.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月行天完成签到,获得积分10
1秒前
3秒前
智青完成签到,获得积分10
4秒前
不安青牛应助LLL采纳,获得10
5秒前
在水一方应助LLL采纳,获得10
5秒前
丑丑阿发布了新的文献求助10
5秒前
5秒前
科研通AI2S应助小李爱科研采纳,获得10
6秒前
荼蘼发布了新的文献求助10
7秒前
迷人素发布了新的文献求助10
9秒前
郭鹏完成签到,获得积分10
10秒前
12秒前
iNk应助dll采纳,获得10
12秒前
迷人素完成签到,获得积分10
14秒前
17秒前
17秒前
18秒前
张宝发布了新的文献求助10
19秒前
JamesPei应助爱学习的源儿采纳,获得10
21秒前
追寻半仙完成签到,获得积分10
21秒前
haha完成签到,获得积分20
21秒前
小萝莉发布了新的文献求助10
22秒前
Joel发布了新的文献求助10
23秒前
科研通AI2S应助真实的哲瀚采纳,获得10
26秒前
26秒前
priss111应助ling22采纳,获得30
26秒前
w1完成签到,获得积分10
28秒前
28秒前
bing发布了新的文献求助10
29秒前
从容的皮皮虾完成签到 ,获得积分10
29秒前
30秒前
科研通AI2S应助木木采纳,获得10
35秒前
pluto应助张晓春采纳,获得10
36秒前
士艳发布了新的文献求助10
37秒前
11111完成签到,获得积分20
39秒前
liudy发布了新的文献求助10
39秒前
科研通AI2S应助伊伊采纳,获得10
40秒前
后知后觉发布了新的文献求助10
41秒前
41秒前
41秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161611
求助须知:如何正确求助?哪些是违规求助? 2812907
关于积分的说明 7897655
捐赠科研通 2471797
什么是DOI,文献DOI怎么找? 1316160
科研通“疑难数据库(出版商)”最低求助积分说明 631222
版权声明 602112