State of health assessment for echelon utilization batteries based on deep neural network learning with error correction

人工神经网络 电池(电) 健康状况 马尔可夫毯 计算机科学 马尔可夫链 深度学习 人工智能 可靠性工程 工程类 机器学习 马尔可夫模型 功率(物理) 量子力学 物理 马尔可夫性质
作者
Zixuan Wei,Xiaojuan Han,Jiarong Li
出处
期刊:Journal of energy storage [Elsevier]
卷期号:51: 104428-104428 被引量:22
标识
DOI:10.1016/j.est.2022.104428
摘要

The accurate prediction of the state of health for retired batteries is the premise to ensure the safe and efficient operation of echelon utilization batteries. Aiming at the problems of limited battery cycle data and coupling of health status parameters, an assessment method of the state of health for echelon utilization batteries based on deep neural network learning with error correction is proposed in this paper. According to the reference discharge curve of echelon utilization batteries, the main characteristic parameters characterizing the performance aging of echelon utilization batteries are mined, and the state of health evaluation model of echelon utilization batteries based on deep neural network learning is established after the dimensionality of these characteristic parameters are reduced by the grey correlation analysis method. Markov chain error correction is used to further improve the prediction accuracy of the established deep neural network model. The effectiveness of the proposed method is verified by the simulation analysis of lithium-ion battery cycle test data from NASA Ames Prediction Center of Excellence. The simulation results show that the average absolute errors of the state of health prediction for echelon utilization batteries are less than 0.8% after the deep neural network learning prediction model is modified by Markov chain error, which provides a theoretical basis for the safe and stable operation of echelon utilization batteries. • Aging characteristics of echelon utilization batteries are extracted according to reference discharge curve. • The dimension of battery aging characteristics is reduced by grey correlation analysis method. • The preliminary prediction of SOH is achieved by deep neural network learning. • The prediction accuracy of SOH is further improved by Markov chain error correction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿毛发布了新的文献求助10
1秒前
2秒前
情怀应助灵巧荆采纳,获得10
2秒前
Ll发布了新的文献求助10
2秒前
Peter发布了新的文献求助30
3秒前
3秒前
4秒前
科研韭菜发布了新的文献求助10
4秒前
科研通AI5应助爱学习采纳,获得10
4秒前
科研通AI5应助跳跃的太阳采纳,获得10
4秒前
苏尔琳诺完成签到,获得积分10
4秒前
科研通AI5应助a1oft采纳,获得10
5秒前
5秒前
关关过完成签到,获得积分10
5秒前
呢不辣完成签到,获得积分10
5秒前
5秒前
shi hui应助陈博士采纳,获得10
5秒前
5秒前
糖糖关注了科研通微信公众号
6秒前
6秒前
小恶于完成签到 ,获得积分10
6秒前
科研通AI2S应助落晨采纳,获得10
7秒前
7秒前
8秒前
半颗橙子发布了新的文献求助10
8秒前
小可爱完成签到 ,获得积分10
8秒前
9秒前
10秒前
10秒前
Jiangnj发布了新的文献求助30
10秒前
samantha完成签到,获得积分10
11秒前
11秒前
俎树同完成签到 ,获得积分10
11秒前
Natsu完成签到,获得积分10
11秒前
马保国123发布了新的文献求助10
12秒前
丘比特应助无限的隶采纳,获得10
12秒前
在云里爱与歌完成签到,获得积分10
13秒前
迟大猫应助研究生采纳,获得10
13秒前
可行完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762