State of health assessment for echelon utilization batteries based on deep neural network learning with error correction

人工神经网络 电池(电) 健康状况 马尔可夫毯 计算机科学 马尔可夫链 深度学习 人工智能 可靠性工程 工程类 机器学习 马尔可夫模型 功率(物理) 量子力学 物理 马尔可夫性质
作者
Zixuan Wei,Xiaojuan Han,Jiarong Li
出处
期刊:Journal of energy storage [Elsevier]
卷期号:51: 104428-104428 被引量:22
标识
DOI:10.1016/j.est.2022.104428
摘要

The accurate prediction of the state of health for retired batteries is the premise to ensure the safe and efficient operation of echelon utilization batteries. Aiming at the problems of limited battery cycle data and coupling of health status parameters, an assessment method of the state of health for echelon utilization batteries based on deep neural network learning with error correction is proposed in this paper. According to the reference discharge curve of echelon utilization batteries, the main characteristic parameters characterizing the performance aging of echelon utilization batteries are mined, and the state of health evaluation model of echelon utilization batteries based on deep neural network learning is established after the dimensionality of these characteristic parameters are reduced by the grey correlation analysis method. Markov chain error correction is used to further improve the prediction accuracy of the established deep neural network model. The effectiveness of the proposed method is verified by the simulation analysis of lithium-ion battery cycle test data from NASA Ames Prediction Center of Excellence. The simulation results show that the average absolute errors of the state of health prediction for echelon utilization batteries are less than 0.8% after the deep neural network learning prediction model is modified by Markov chain error, which provides a theoretical basis for the safe and stable operation of echelon utilization batteries. • Aging characteristics of echelon utilization batteries are extracted according to reference discharge curve. • The dimension of battery aging characteristics is reduced by grey correlation analysis method. • The preliminary prediction of SOH is achieved by deep neural network learning. • The prediction accuracy of SOH is further improved by Markov chain error correction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助科研通管家采纳,获得10
刚刚
Hayat应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
天天快乐应助坚定紫山采纳,获得10
刚刚
刚刚
好困应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
Singularity应助科研通管家采纳,获得10
刚刚
Rue完成签到,获得积分10
刚刚
刚刚
果果完成签到,获得积分10
1秒前
tiantianquan完成签到,获得积分10
1秒前
壮观惋庭发布了新的文献求助10
1秒前
1秒前
myelin完成签到,获得积分10
2秒前
英俊凡波完成签到,获得积分10
2秒前
8788完成签到,获得积分10
4秒前
南栀完成签到,获得积分10
4秒前
香蕉觅云应助微笑的依凝采纳,获得30
4秒前
田様应助uwasa采纳,获得10
4秒前
毛头侠发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
夜捕白日梦完成签到,获得积分10
7秒前
caihong1完成签到,获得积分20
7秒前
GAOSAN完成签到,获得积分10
8秒前
9秒前
9秒前
毛头侠完成签到,获得积分10
10秒前
11秒前
浅尝离白应助HXie采纳,获得30
11秒前
一只跳水的鱼完成签到,获得积分10
11秒前
深情安青应助lilili采纳,获得10
11秒前
愉快问枫完成签到,获得积分20
11秒前
12秒前
笨笨雪碧完成签到,获得积分10
12秒前
思源应助Douvei采纳,获得10
12秒前
caihong1发布了新的文献求助10
12秒前
憨憨完成签到,获得积分10
12秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3254512
求助须知:如何正确求助?哪些是违规求助? 2896718
关于积分的说明 8294056
捐赠科研通 2565699
什么是DOI,文献DOI怎么找? 1393246
科研通“疑难数据库(出版商)”最低求助积分说明 652443
邀请新用户注册赠送积分活动 630000