多效唑
内分泌系统
内分泌学
内科学
甲状腺
生物
癌基因
癌症研究
医学
激素
癌症
细胞周期
农学
作者
Hui Liu,Yanyan Xu,Yuming Wang,Chunyang Liu,Jun Chen,Simiao Fan,Lijuan Xie,Yaqian Dong,Siyu Chen,Wenjie Zhou,Yubo Li
标识
DOI:10.1016/j.ecoenv.2022.113386
摘要
The present study investigated the effects of paclobutrazol and uniconazole on thyroid endocrine system in rats. Lipidomic analysis was performed to obtain the biomarkers of thyroid endocrine disruption induced by paclobutrazol and uniconazole. Network pharmacology was further used to discover potential targets of biomarkers related to drugs and diseases. After paclobutrazol and uniconazole administration, seven and four common biomarkers related to thyroid endocrine disruption for female and male rats were obtained, respectively. Paclobutrazol and uniconazole significantly increased the biomarker levels of PG (12:0/15:0), PS (14:0/16:0), PA (20:1/15:0) and PG (13:0/17:0) in both sexes of rats. Exposure to paclobutrazol additionally caused a significant decrease of PG (22:6/20:2), PE (24:1/18:1) and PE (24:0/18:0) in female rats, while an increase in male rats. Changes of the common biomarkers for paclobutrazol and uniconazole revealed similar endocrine disruption effect, which was higher in the females. Network pharmacology and KEGG pathway analysis indicated that the thyroid endocrine disrupting effects of paclobutrazol and uniconazole may be related to V-akt murine thymoma viral oncogene homolog (Akts), mitogen-activated protein kinase (MAPKs), epidermal growth factor receptor (EGFR), Insulin-like growth factor (IGF-1), IGF-IR and V-Raf murine sarcoma viral oncogene homolog B1 (BRAF). The results demonstrated that paclobutrazol and uniconazole could cause thyroid endocrine disorders in male and female rats, which were sex-specific, thus highlighting the importance of safe and effective application of these plant growth regulators.
科研通智能强力驱动
Strongly Powered by AbleSci AI