Assessing the Transmissibility of the New SARS-CoV-2 Variants: From Delta to Omicron

贝叶斯概率 2019年冠状病毒病(COVID-19) 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 置信区间 区间(图论) 接种疫苗 传递率(结构动力学) 2019-20冠状病毒爆发 人口学 生物 统计 环境卫生 地理 医学 病毒学 数学 内科学 爆发 物理 疾病 社会学 组合数学 传染病(医学专业) 振动 隔振 量子力学
作者
Rui Dong,Taojun Hu,Yunjun Zhang,Li Yang,Xiao‐Hua Zhou
出处
期刊:Vaccines [MDPI AG]
卷期号:10 (4): 496-496 被引量:16
标识
DOI:10.3390/vaccines10040496
摘要

Omicron, the latest SARS-CoV-2 Variant of Concern (VOC), first appeared in Africa in November 2021. At present, the question of whether a new VOC will out-compete the currently predominant variant is important for governments seeking to determine if current surveillance strategies and responses are appropriate and reasonable. Based on both virus genomes and daily-confirmed cases, we compare the additive differences in growth rates and reproductive numbers (R0) between VOCs and their predominant variants through a Bayesian framework and phylo-dynamics analysis. Faced with different variants, we evaluate the effects of current policies and vaccinations against VOCs and predominant variants. The model also predicts the date on which a VOC may become dominant based on simulation and real data in the early stage. The results suggest that the overall additive difference in growth rates of B.1.617.2 and predominant variants was 0.44 (95% confidence interval, 95% CI: -0.38, 1.25) in February 2021, and that the VOC had a relatively high R0. The additive difference in the growth rate of BA.1 in the United Kingdom was 6.82 times the difference between Delta and Alpha, and the model successfully predicted the dominating process of Alpha, Delta and Omicron. Current vaccination strategies remain similarly effective against Delta compared to the previous variants. Our model proposes a reliable Bayesian framework to predict the spread trends of VOCs based on early-stage data, and evaluates the effects of public health policies, which may help us better prepare for the upcoming Omicron variant, which is now spreading at an unprecedented speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能的小叮当完成签到,获得积分0
1秒前
1秒前
1秒前
2秒前
雪花君发布了新的文献求助10
2秒前
2秒前
lalala发布了新的文献求助10
3秒前
6秒前
小小科研人完成签到,获得积分10
7秒前
zpq完成签到,获得积分10
8秒前
执着牛青发布了新的文献求助10
8秒前
9秒前
10秒前
常常完成签到,获得积分10
12秒前
Spine Lin发布了新的文献求助10
12秒前
Akim应助靬七采纳,获得10
13秒前
14秒前
高兴的小完成签到,获得积分10
14秒前
娇娇大王完成签到,获得积分10
15秒前
15秒前
平常的苡完成签到,获得积分10
15秒前
18秒前
19秒前
yangyong完成签到,获得积分10
19秒前
鳗鱼香魔完成签到,获得积分10
21秒前
科研通AI2S应助迦太基采纳,获得10
21秒前
22秒前
321发布了新的文献求助10
23秒前
24秒前
24秒前
Orange应助孙兆杰采纳,获得10
24秒前
可乐完成签到,获得积分10
25秒前
26秒前
系统提示完成签到,获得积分10
26秒前
26秒前
hello小鹿完成签到,获得积分10
26秒前
27秒前
ggw发布了新的文献求助10
27秒前
畅快的含烟完成签到,获得积分10
27秒前
涛神完成签到,获得积分20
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141588
求助须知:如何正确求助?哪些是违规求助? 2792521
关于积分的说明 7803368
捐赠科研通 2448740
什么是DOI,文献DOI怎么找? 1302918
科研通“疑难数据库(出版商)”最低求助积分说明 626665
版权声明 601240