Cross-modal distillation with audio–text fusion for fine-grained emotion classification using BERT and Wav2vec 2.0

计算机科学 模态(人机交互) 人工智能 特征学习 特征(语言学) 语音识别 机器学习 自然语言处理 语言学 哲学
作者
Dong‐Hwa Kim,Pilsung Kang
出处
期刊:Neurocomputing [Elsevier]
卷期号:506: 168-183 被引量:17
标识
DOI:10.1016/j.neucom.2022.07.035
摘要

Fine-grained emotion classification for mood- and emotion-related physical-characteristics detection and its application to computer technology using biometric sensors has been extensively researched in the field of affective computing. Although text modality has achieved a considerably high performance from the perspective of sentiment analysis, which simply classifies a positive or negative label, fine-grained emotion classification requires additional information besides text. An audio feature can be adopted as the additional information as it is closely associated with text, and the characteristics of the changes in sound pulses can be employed in fine-grained emotion classification. However, the multimodal datasets related to fine-grained emotion are limited, and the scalability and efficiency are insufficient for multimodal training to be applied extensively via the self-supervised learning (Self-SL) approach, which can adequately represent modality. To address these limitations, we propose cross-modal distillation (CMD), which induces the feature spaces of student models with a few parameters while receiving those of the teacher models that can adequately express each modality based on Self-SL. The proposed CMD performs the mapping of a feature space between teacher-student models based on contrastive learning, while two attention mechanisms—cross-attention between audio and text features and self-attention for features in modality—are performed during knowledge distillation. Wav2vec 2.0 and BERT, which are already adequately trained for audio and text via Self-SL, were adopted as teacher models; audio–text transformer models were used as student models. Accordingly, the CMD-based representation learning applies a lightweight model for IEMOCAP, MELD, and CMU–MOSEI datasets with the task of multi-class emotion classification, while exhibiting better fine-grained emotion classification performance than benchmark models with a considerably low uncertainty for prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DZS完成签到 ,获得积分10
4秒前
wml发布了新的文献求助10
4秒前
七厘米发布了新的文献求助10
4秒前
506407完成签到,获得积分10
6秒前
土拨鼠完成签到 ,获得积分0
7秒前
liukanhai完成签到,获得积分10
10秒前
豆⑧完成签到,获得积分10
14秒前
不劳而获完成签到 ,获得积分10
19秒前
JUN完成签到,获得积分10
20秒前
shacodow完成签到,获得积分10
21秒前
ll完成签到,获得积分10
23秒前
瞿人雄完成签到,获得积分10
24秒前
龙弟弟完成签到 ,获得积分10
25秒前
没心没肺完成签到,获得积分10
26秒前
学术霸王完成签到,获得积分10
27秒前
1002SHIB完成签到,获得积分10
28秒前
nihaolaojiu完成签到,获得积分10
28秒前
sheetung完成签到,获得积分10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
53秒前
路漫漫其修远兮完成签到 ,获得积分10
54秒前
月下荷花完成签到 ,获得积分10
54秒前
小山己几完成签到,获得积分10
1分钟前
李音完成签到 ,获得积分10
1分钟前
七厘米发布了新的文献求助10
1分钟前
哥哥发布了新的文献求助10
1分钟前
周周南完成签到 ,获得积分10
1分钟前
1分钟前
Brenda完成签到,获得积分10
1分钟前
光亮若翠完成签到,获得积分10
1分钟前
忧虑的静柏完成签到 ,获得积分10
1分钟前
颜小喵完成签到 ,获得积分10
1分钟前
悦耳的城完成签到 ,获得积分10
1分钟前
七厘米完成签到,获得积分10
1分钟前
单纯无声完成签到 ,获得积分10
2分钟前
平凡世界完成签到 ,获得积分10
2分钟前
Neko完成签到,获得积分10
2分钟前
fbwg完成签到,获得积分10
2分钟前
Johan完成签到 ,获得积分10
2分钟前
松柏完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715346
求助须知:如何正确求助?哪些是违规求助? 5233652
关于积分的说明 15274288
捐赠科研通 4866240
什么是DOI,文献DOI怎么找? 2612837
邀请新用户注册赠送积分活动 1562989
关于科研通互助平台的介绍 1520370