Cross-modal distillation with audio–text fusion for fine-grained emotion classification using BERT and Wav2vec 2.0

计算机科学 模态(人机交互) 人工智能 特征学习 特征(语言学) 语音识别 机器学习 自然语言处理 语言学 哲学
作者
Dong‐Hwa Kim,Pilsung Kang
出处
期刊:Neurocomputing [Elsevier]
卷期号:506: 168-183 被引量:14
标识
DOI:10.1016/j.neucom.2022.07.035
摘要

Fine-grained emotion classification for mood- and emotion-related physical-characteristics detection and its application to computer technology using biometric sensors has been extensively researched in the field of affective computing. Although text modality has achieved a considerably high performance from the perspective of sentiment analysis, which simply classifies a positive or negative label, fine-grained emotion classification requires additional information besides text. An audio feature can be adopted as the additional information as it is closely associated with text, and the characteristics of the changes in sound pulses can be employed in fine-grained emotion classification. However, the multimodal datasets related to fine-grained emotion are limited, and the scalability and efficiency are insufficient for multimodal training to be applied extensively via the self-supervised learning (Self-SL) approach, which can adequately represent modality. To address these limitations, we propose cross-modal distillation (CMD), which induces the feature spaces of student models with a few parameters while receiving those of the teacher models that can adequately express each modality based on Self-SL. The proposed CMD performs the mapping of a feature space between teacher-student models based on contrastive learning, while two attention mechanisms—cross-attention between audio and text features and self-attention for features in modality—are performed during knowledge distillation. Wav2vec 2.0 and BERT, which are already adequately trained for audio and text via Self-SL, were adopted as teacher models; audio–text transformer models were used as student models. Accordingly, the CMD-based representation learning applies a lightweight model for IEMOCAP, MELD, and CMU–MOSEI datasets with the task of multi-class emotion classification, while exhibiting better fine-grained emotion classification performance than benchmark models with a considerably low uncertainty for prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小琦无敌完成签到,获得积分10
1秒前
干辣椒完成签到 ,获得积分10
19秒前
chenbin完成签到,获得积分10
22秒前
陈米花完成签到,获得积分10
26秒前
yyjl31完成签到,获得积分0
26秒前
Simon_chat完成签到,获得积分0
26秒前
吐司炸弹完成签到,获得积分10
28秒前
mayfly完成签到,获得积分10
28秒前
科研通AI2S应助科研通管家采纳,获得30
30秒前
guoguo1119完成签到 ,获得积分10
59秒前
Airhug完成签到 ,获得积分10
1分钟前
summer完成签到 ,获得积分10
1分钟前
1分钟前
Polymer72应助dd采纳,获得10
1分钟前
川藏客完成签到 ,获得积分10
1分钟前
卡卡完成签到,获得积分10
1分钟前
zhaolei完成签到 ,获得积分10
1分钟前
煜琪完成签到 ,获得积分10
1分钟前
小胖完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
龙超人完成签到,获得积分20
2分钟前
等等发布了新的文献求助10
2分钟前
Fiona完成签到 ,获得积分10
2分钟前
研友_VZG7GZ应助等等采纳,获得10
2分钟前
飞云完成签到 ,获得积分10
2分钟前
123完成签到 ,获得积分10
2分钟前
泡泡茶壶o完成签到 ,获得积分10
2分钟前
游01完成签到 ,获得积分10
2分钟前
lmy完成签到 ,获得积分10
3分钟前
Polymer72应助TT采纳,获得10
3分钟前
TOUHOUU完成签到 ,获得积分10
3分钟前
slp完成签到 ,获得积分10
3分钟前
顺心的问薇完成签到 ,获得积分10
3分钟前
frankly120完成签到,获得积分10
3分钟前
maomao完成签到,获得积分10
3分钟前
人类繁殖学完成签到 ,获得积分10
3分钟前
红茸茸羊完成签到 ,获得积分10
3分钟前
lesyeuxdexx完成签到 ,获得积分10
3分钟前
su完成签到 ,获得积分10
4分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Solution Manual for Strategic Compensation A Human Resource Management Approach 600
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330518
求助须知:如何正确求助?哪些是违规求助? 2960056
关于积分的说明 8598317
捐赠科研通 2638742
什么是DOI,文献DOI怎么找? 1444497
科研通“疑难数据库(出版商)”最低求助积分说明 669112
邀请新用户注册赠送积分活动 656771