Cross-modal distillation with audio–text fusion for fine-grained emotion classification using BERT and Wav2vec 2.0

计算机科学 模态(人机交互) 人工智能 特征学习 特征(语言学) 语音识别 机器学习 自然语言处理 语言学 哲学
作者
Dong‐Hwa Kim,Pilsung Kang
出处
期刊:Neurocomputing [Elsevier]
卷期号:506: 168-183 被引量:17
标识
DOI:10.1016/j.neucom.2022.07.035
摘要

Fine-grained emotion classification for mood- and emotion-related physical-characteristics detection and its application to computer technology using biometric sensors has been extensively researched in the field of affective computing. Although text modality has achieved a considerably high performance from the perspective of sentiment analysis, which simply classifies a positive or negative label, fine-grained emotion classification requires additional information besides text. An audio feature can be adopted as the additional information as it is closely associated with text, and the characteristics of the changes in sound pulses can be employed in fine-grained emotion classification. However, the multimodal datasets related to fine-grained emotion are limited, and the scalability and efficiency are insufficient for multimodal training to be applied extensively via the self-supervised learning (Self-SL) approach, which can adequately represent modality. To address these limitations, we propose cross-modal distillation (CMD), which induces the feature spaces of student models with a few parameters while receiving those of the teacher models that can adequately express each modality based on Self-SL. The proposed CMD performs the mapping of a feature space between teacher-student models based on contrastive learning, while two attention mechanisms—cross-attention between audio and text features and self-attention for features in modality—are performed during knowledge distillation. Wav2vec 2.0 and BERT, which are already adequately trained for audio and text via Self-SL, were adopted as teacher models; audio–text transformer models were used as student models. Accordingly, the CMD-based representation learning applies a lightweight model for IEMOCAP, MELD, and CMU–MOSEI datasets with the task of multi-class emotion classification, while exhibiting better fine-grained emotion classification performance than benchmark models with a considerably low uncertainty for prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gideon完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
赘婿应助yating采纳,获得10
2秒前
3秒前
4秒前
xudaniel发布了新的文献求助10
5秒前
G18960完成签到,获得积分10
6秒前
6秒前
3719left发布了新的文献求助10
7秒前
Angel发布了新的文献求助10
7秒前
xmn0717发布了新的文献求助10
9秒前
小鱼发布了新的文献求助10
10秒前
灵巧的导师完成签到,获得积分10
12秒前
Connor完成签到,获得积分10
13秒前
Hibiscus95发布了新的文献求助10
13秒前
Bugs完成签到,获得积分10
14秒前
cheng发布了新的文献求助10
14秒前
15秒前
爆米花应助2182265539采纳,获得10
16秒前
豆豆完成签到 ,获得积分10
17秒前
小闵发布了新的文献求助10
17秒前
啊怙纲完成签到 ,获得积分10
19秒前
科研通AI6.1应助小鱼采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
23秒前
24秒前
小闵完成签到,获得积分10
24秒前
天天快乐应助现代雁桃采纳,获得10
25秒前
bin_zhang完成签到,获得积分10
25秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
pancake发布了新的文献求助10
26秒前
小鱼完成签到,获得积分10
27秒前
清新的幼旋关注了科研通微信公众号
27秒前
黄先生发布了新的文献求助10
28秒前
觉悟111发布了新的文献求助10
28秒前
emoji发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741889
求助须知:如何正确求助?哪些是违规求助? 5404554
关于积分的说明 15343509
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625018
邀请新用户注册赠送积分活动 1573876
关于科研通互助平台的介绍 1530812