Cross-modal distillation with audio–text fusion for fine-grained emotion classification using BERT and Wav2vec 2.0

计算机科学 模态(人机交互) 人工智能 特征学习 特征(语言学) 语音识别 机器学习 自然语言处理 语言学 哲学
作者
Dong‐Hwa Kim,Pilsung Kang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:506: 168-183 被引量:17
标识
DOI:10.1016/j.neucom.2022.07.035
摘要

Fine-grained emotion classification for mood- and emotion-related physical-characteristics detection and its application to computer technology using biometric sensors has been extensively researched in the field of affective computing. Although text modality has achieved a considerably high performance from the perspective of sentiment analysis, which simply classifies a positive or negative label, fine-grained emotion classification requires additional information besides text. An audio feature can be adopted as the additional information as it is closely associated with text, and the characteristics of the changes in sound pulses can be employed in fine-grained emotion classification. However, the multimodal datasets related to fine-grained emotion are limited, and the scalability and efficiency are insufficient for multimodal training to be applied extensively via the self-supervised learning (Self-SL) approach, which can adequately represent modality. To address these limitations, we propose cross-modal distillation (CMD), which induces the feature spaces of student models with a few parameters while receiving those of the teacher models that can adequately express each modality based on Self-SL. The proposed CMD performs the mapping of a feature space between teacher-student models based on contrastive learning, while two attention mechanisms—cross-attention between audio and text features and self-attention for features in modality—are performed during knowledge distillation. Wav2vec 2.0 and BERT, which are already adequately trained for audio and text via Self-SL, were adopted as teacher models; audio–text transformer models were used as student models. Accordingly, the CMD-based representation learning applies a lightweight model for IEMOCAP, MELD, and CMU–MOSEI datasets with the task of multi-class emotion classification, while exhibiting better fine-grained emotion classification performance than benchmark models with a considerably low uncertainty for prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
阿啵呲嘚呃of咯完成签到 ,获得积分10
3秒前
科研通AI5应助小四喜采纳,获得10
3秒前
4秒前
余青松完成签到,获得积分10
4秒前
safeheart完成签到,获得积分10
5秒前
科研通AI6应助佳佳采纳,获得10
6秒前
Devil发布了新的文献求助10
6秒前
7秒前
andy完成签到,获得积分10
7秒前
feifei发布了新的文献求助10
8秒前
wyg完成签到,获得积分10
9秒前
1461644768发布了新的文献求助10
9秒前
Criminology34应助kingwill采纳,获得30
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
sweet0225完成签到 ,获得积分10
11秒前
文博发布了新的文献求助10
11秒前
清脆听双完成签到 ,获得积分10
11秒前
wdml发布了新的文献求助20
12秒前
13秒前
鳗鱼紫萱完成签到,获得积分10
13秒前
疯狂的青枫完成签到 ,获得积分10
15秒前
LX发布了新的文献求助10
15秒前
15秒前
向晚完成签到 ,获得积分10
15秒前
猫七发布了新的文献求助10
18秒前
正直静曼完成签到 ,获得积分10
19秒前
kyhappy_2002发布了新的文献求助30
20秒前
英姑应助Devil采纳,获得10
20秒前
小狗黑头完成签到,获得积分10
20秒前
21秒前
浅色凉生发布了新的文献求助10
22秒前
22秒前
23秒前
24秒前
铅笔完成签到,获得积分10
24秒前
R先生完成签到,获得积分10
25秒前
25秒前
张贵虎发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062428
求助须知:如何正确求助?哪些是违规求助? 4286268
关于积分的说明 13356749
捐赠科研通 4104095
什么是DOI,文献DOI怎么找? 2247300
邀请新用户注册赠送积分活动 1252893
关于科研通互助平台的介绍 1183800