亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross-modal distillation with audio–text fusion for fine-grained emotion classification using BERT and Wav2vec 2.0

计算机科学 模态(人机交互) 人工智能 特征学习 特征(语言学) 语音识别 机器学习 自然语言处理 语言学 哲学
作者
Dong‐Hwa Kim,Pilsung Kang
出处
期刊:Neurocomputing [Elsevier]
卷期号:506: 168-183 被引量:17
标识
DOI:10.1016/j.neucom.2022.07.035
摘要

Fine-grained emotion classification for mood- and emotion-related physical-characteristics detection and its application to computer technology using biometric sensors has been extensively researched in the field of affective computing. Although text modality has achieved a considerably high performance from the perspective of sentiment analysis, which simply classifies a positive or negative label, fine-grained emotion classification requires additional information besides text. An audio feature can be adopted as the additional information as it is closely associated with text, and the characteristics of the changes in sound pulses can be employed in fine-grained emotion classification. However, the multimodal datasets related to fine-grained emotion are limited, and the scalability and efficiency are insufficient for multimodal training to be applied extensively via the self-supervised learning (Self-SL) approach, which can adequately represent modality. To address these limitations, we propose cross-modal distillation (CMD), which induces the feature spaces of student models with a few parameters while receiving those of the teacher models that can adequately express each modality based on Self-SL. The proposed CMD performs the mapping of a feature space between teacher-student models based on contrastive learning, while two attention mechanisms—cross-attention between audio and text features and self-attention for features in modality—are performed during knowledge distillation. Wav2vec 2.0 and BERT, which are already adequately trained for audio and text via Self-SL, were adopted as teacher models; audio–text transformer models were used as student models. Accordingly, the CMD-based representation learning applies a lightweight model for IEMOCAP, MELD, and CMU–MOSEI datasets with the task of multi-class emotion classification, while exhibiting better fine-grained emotion classification performance than benchmark models with a considerably low uncertainty for prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
SUNny发布了新的文献求助10
8秒前
笑傲完成签到,获得积分10
37秒前
开心每一天完成签到 ,获得积分10
1分钟前
房天川完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
杨泽宇发布了新的文献求助10
1分钟前
日常K人完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
SnowElf完成签到,获得积分10
2分钟前
2分钟前
hongye发布了新的文献求助30
2分钟前
SnowElf发布了新的文献求助10
2分钟前
2分钟前
2分钟前
orangel发布了新的文献求助10
2分钟前
hongye完成签到 ,获得积分10
3分钟前
小粒橙完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
HaoZhang发布了新的文献求助10
3分钟前
HaoZhang完成签到,获得积分20
3分钟前
尼古拉斯铁柱完成签到 ,获得积分10
4分钟前
矜持完成签到 ,获得积分10
4分钟前
Mic应助笑点低的斑马采纳,获得10
4分钟前
lixuebin发布了新的文献求助10
4分钟前
5分钟前
小白发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
嗨嗨嗨完成签到 ,获得积分10
7分钟前
胖小羊完成签到 ,获得积分10
7分钟前
8分钟前
桥西小河完成签到 ,获得积分10
8分钟前
脑洞疼应助怕孤独的怀莲采纳,获得30
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664503
求助须知:如何正确求助?哪些是违规求助? 4863764
关于积分的说明 15107879
捐赠科研通 4823133
什么是DOI,文献DOI怎么找? 2581988
邀请新用户注册赠送积分活动 1536081
关于科研通互助平台的介绍 1494505