Cross-modal distillation with audio–text fusion for fine-grained emotion classification using BERT and Wav2vec 2.0

计算机科学 模态(人机交互) 人工智能 特征学习 特征(语言学) 语音识别 机器学习 自然语言处理 语言学 哲学
作者
Dong‐Hwa Kim,Pilsung Kang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:506: 168-183 被引量:17
标识
DOI:10.1016/j.neucom.2022.07.035
摘要

Fine-grained emotion classification for mood- and emotion-related physical-characteristics detection and its application to computer technology using biometric sensors has been extensively researched in the field of affective computing. Although text modality has achieved a considerably high performance from the perspective of sentiment analysis, which simply classifies a positive or negative label, fine-grained emotion classification requires additional information besides text. An audio feature can be adopted as the additional information as it is closely associated with text, and the characteristics of the changes in sound pulses can be employed in fine-grained emotion classification. However, the multimodal datasets related to fine-grained emotion are limited, and the scalability and efficiency are insufficient for multimodal training to be applied extensively via the self-supervised learning (Self-SL) approach, which can adequately represent modality. To address these limitations, we propose cross-modal distillation (CMD), which induces the feature spaces of student models with a few parameters while receiving those of the teacher models that can adequately express each modality based on Self-SL. The proposed CMD performs the mapping of a feature space between teacher-student models based on contrastive learning, while two attention mechanisms—cross-attention between audio and text features and self-attention for features in modality—are performed during knowledge distillation. Wav2vec 2.0 and BERT, which are already adequately trained for audio and text via Self-SL, were adopted as teacher models; audio–text transformer models were used as student models. Accordingly, the CMD-based representation learning applies a lightweight model for IEMOCAP, MELD, and CMU–MOSEI datasets with the task of multi-class emotion classification, while exhibiting better fine-grained emotion classification performance than benchmark models with a considerably low uncertainty for prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sylinmm完成签到,获得积分10
1秒前
DY完成签到,获得积分10
1秒前
manmanzhong完成签到 ,获得积分10
2秒前
wipmzxu完成签到,获得积分10
3秒前
3秒前
yiyi完成签到,获得积分10
4秒前
踏水追风完成签到,获得积分10
5秒前
youili完成签到 ,获得积分10
5秒前
7秒前
食草味完成签到,获得积分20
8秒前
凌兰完成签到 ,获得积分10
8秒前
XZ完成签到,获得积分10
9秒前
小羊完成签到 ,获得积分10
9秒前
陈牛逼完成签到 ,获得积分10
9秒前
斯文败类应助adeno采纳,获得10
10秒前
积极废物完成签到 ,获得积分10
11秒前
深情安青应助贾不可采纳,获得10
11秒前
shimenwanzhao完成签到 ,获得积分0
12秒前
苻醉山完成签到 ,获得积分0
15秒前
DezhaoWang完成签到,获得积分10
15秒前
memory完成签到,获得积分10
15秒前
山神厘子完成签到,获得积分10
15秒前
犹豫山河完成签到,获得积分20
19秒前
leo完成签到 ,获得积分10
19秒前
hyf完成签到 ,获得积分10
20秒前
双青豆完成签到 ,获得积分10
22秒前
里埃尔塞因斯完成签到 ,获得积分10
22秒前
tetrakis完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
彭于彦祖完成签到,获得积分0
26秒前
王QQ完成签到 ,获得积分10
26秒前
和风完成签到 ,获得积分10
26秒前
万能图书馆应助贾不可采纳,获得10
26秒前
CLY完成签到,获得积分10
27秒前
miaomiao发布了新的文献求助100
31秒前
三杠完成签到 ,获得积分10
31秒前
嗒嗒完成签到,获得积分10
31秒前
Carry发布了新的文献求助10
31秒前
星辰大海应助why采纳,获得10
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027