阳极
电催化剂
离解(化学)
阴极
材料科学
氢
析氧
吸附
催化作用
兴奋剂
化学工程
分解水
无机化学
化学
电化学
物理化学
光电子学
电极
工程类
有机化学
光催化
生物化学
作者
Yafeng Chen,Meng Ge,Tao Yang,Chang Chen,Ziwei Chang,Fantao Kong,Han Tian,Xiangzhi Cui,Xinmei Hou,Jianlin Shi
标识
DOI:10.1016/j.cej.2022.138157
摘要
Earth-abundant MoS2 has attracted great attentions as a promising hydrogen evolution reaction (HER) electrocatalyst, but it is limited by sluggish water dissociation and strong adsorption of the oxygen-containing intermediates in alkaline media. Herein, an interfacial engineering strategy to fabricate Co-doped 1T-MoS2 coupling with V2C MXene was reported to improve the HER kinetics of MoS2. DFT calculations predict that the construction of heterogeneous interfaces between V2C MXene and Co-doped 1T-MoS2 can effectively reduce the energy barrier of water dissociation and optimize the free energy of hydrogen adsorption. As a result, the synthesized Co-MoS2/V2[email protected] nanohybrid exhibits excellent HER performance with small overpotentials of 70.1, 263.2 and 296 mV to achieve current densities of 10, 500 and 1000 mA cm−2, respectively, and outstanding stability for 50 h HER test without degradation. Additionally, the overall hydrazine-assisted water splitting (OHzS) system catalyzed by Co-MoS2/V2[email protected] in both anode and cathode requires only 0.33 V to achieve a current density of 10 mA cm−2 with significant long-term durability.
科研通智能强力驱动
Strongly Powered by AbleSci AI