Boundary Constraint Network With Cross Layer Feature Integration for Polyp Segmentation

计算机科学 背景(考古学) 特征(语言学) 分割 卷积神经网络 人工智能 特征提取 模式识别(心理学) 边界(拓扑) 图像分割 约束(计算机辅助设计) 计算机视觉 数学 古生物学 数学分析 哲学 语言学 生物 几何学
作者
Guanghui Yue,Wanwan Han,Bin Jiang,Tianwei Zhou,Runmin Cong,Tianfu Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (8): 4090-4099 被引量:58
标识
DOI:10.1109/jbhi.2022.3173948
摘要

Clinically, proper polyp localization in endoscopy images plays a vital role in the follow-up treatment (e.g., surgical planning). Deep convolutional neural networks (CNNs) provide a favoured prospect for automatic polyp segmentation and evade the limitations of visual inspection, e.g., subjectivity and overwork. However, most existing CNNs-based methods often provide unsatisfactory segmentation performance. In this paper, we propose a novel boundary constraint network, namely BCNet, for accurate polyp segmentation. The success of BCNet benefits from integrating cross-level context information and leveraging edge information. Specifically, to avoid the drawbacks caused by simple feature addition or concentration, BCNet applies a cross-layer feature integration strategy (CFIS) in fusing the features of the top-three highest layers, yielding a better performance. CFIS consists of three attention-driven cross-layer feature interaction modules (ACFIMs) and two global feature integration modules (GFIMs). ACFIM adaptively fuses the context information of the top-three highest layers via the self-attention mechanism instead of direct addition or concentration. GFIM integrates the fused information across layers with the guidance from global attention. To obtain accurate boundaries, BCNet introduces a bilateral boundary extraction module that explores the polyp and non-polyp information of the shallow layer collaboratively based on the high-level location information and boundary supervision. Through joint supervision of the polyp area and boundary, BCNet is able to get more accurate polyp masks. Experimental results on three public datasets show that the proposed BCNet outperforms seven state-of-the-art competing methods in terms of both effectiveness and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小飞完成签到,获得积分10
1秒前
钟博士完成签到,获得积分10
1秒前
ok发布了新的文献求助20
2秒前
zz完成签到,获得积分10
5秒前
perfect完成签到 ,获得积分10
6秒前
华华发布了新的文献求助10
7秒前
faye发布了新的文献求助10
7秒前
科研通AI2S应助Allen采纳,获得10
9秒前
shhs发布了新的文献求助10
11秒前
11秒前
华华完成签到,获得积分10
12秒前
15秒前
研友_LkVAe8完成签到 ,获得积分10
16秒前
123完成签到,获得积分10
16秒前
18秒前
机智菀完成签到,获得积分10
19秒前
情怀应助柯伊达采纳,获得10
20秒前
leo发布了新的文献求助10
20秒前
shhs完成签到,获得积分10
21秒前
21秒前
大迷糊完成签到,获得积分10
22秒前
科研通AI2S应助懒羊羊采纳,获得10
22秒前
ding应助faye采纳,获得10
22秒前
23秒前
爆米花应助feihu采纳,获得10
24秒前
年少轻狂最情深完成签到 ,获得积分10
25秒前
xzy998发布了新的文献求助10
26秒前
科研通AI5应助小张采纳,获得10
27秒前
28秒前
罗肥肥完成签到,获得积分20
30秒前
30秒前
盛夏微凉完成签到 ,获得积分10
30秒前
30秒前
32秒前
等风来发布了新的文献求助10
34秒前
34秒前
34秒前
HHH完成签到 ,获得积分10
34秒前
海鸥跳海发布了新的文献求助10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538560
求助须知:如何正确求助?哪些是违规求助? 3116348
关于积分的说明 9324702
捐赠科研通 2814124
什么是DOI,文献DOI怎么找? 1546485
邀请新用户注册赠送积分活动 720574
科研通“疑难数据库(出版商)”最低求助积分说明 712083