已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery

计算机科学 分割 人工智能 编码器 卷积神经网络 变压器 推论 计算机视觉 深度学习 图像分割 Boosting(机器学习) 模式识别(心理学) 量子力学 操作系统 物理 电压
作者
Libo Wang,Rui Li,Ce Zhang,Shenghui Fang,Chenxi Duan,Xiaoliang Meng,Peter M. Atkinson
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:190: 196-214 被引量:863
标识
DOI:10.1016/j.isprsjprs.2022.06.008
摘要

Semantic segmentation of remotely sensed urban scene images is required in a wide range of practical applications, such as land cover mapping, urban change detection, environmental protection, and economic assessment. Driven by rapid developments in deep learning technologies, the convolutional neural network (CNN) has dominated semantic segmentation for many years. CNN adopts hierarchical feature representation, demonstrating strong capabilities for information extraction. However, the local property of the convolution layer limits the network from capturing the global context. Recently, as a hot topic in the domain of computer vision, Transformer has demonstrated its great potential in global information modelling, boosting many vision-related tasks such as image classification, object detection, and particularly semantic segmentation. In this paper, we propose a Transformer-based decoder and construct an UNet-like Transformer (UNetFormer) for real-time urban scene segmentation. For efficient segmentation, the UNetFormer selects the lightweight ResNet18 as the encoder and develops an efficient global–local attention mechanism to model both global and local information in the decoder. Extensive experiments reveal that our method not only runs faster but also produces higher accuracy compared with state-of-the-art lightweight models. Specifically, the proposed UNetFormer achieved 67.8% and 52.4% mIoU on the UAVid and LoveDA datasets, respectively, while the inference speed can achieve up to 322.4 FPS with a 512 × 512 input on a single NVIDIA GTX 3090 GPU. In further exploration, the proposed Transformer-based decoder combined with a Swin Transformer encoder also achieves the state-of-the-art result (91.3% F1 and 84.1% mIoU) on the Vaihingen dataset. The source code will be freely available at https://github.com/WangLibo1995/GeoSeg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热雅琴发布了新的文献求助10
刚刚
1秒前
CC发布了新的文献求助20
2秒前
科研通AI6应助微笑的采珊采纳,获得10
2秒前
执着的冬瓜完成签到 ,获得积分10
3秒前
3秒前
FashionBoy应助dy采纳,获得10
3秒前
上官若男应助安详的真采纳,获得10
3秒前
zhscu完成签到,获得积分10
3秒前
4秒前
6秒前
Tbq发布了新的文献求助10
7秒前
晚意意意意意完成签到 ,获得积分10
7秒前
8秒前
9秒前
Flora完成签到,获得积分10
9秒前
10秒前
orixero应助雪白阑悦采纳,获得10
10秒前
念l完成签到 ,获得积分10
11秒前
朴素蓝发布了新的文献求助10
13秒前
谨慎三问完成签到 ,获得积分10
13秒前
果泥发布了新的文献求助10
13秒前
。。。完成签到,获得积分10
15秒前
15秒前
LLayoooo完成签到,获得积分10
15秒前
Criminology34举报basil求助涉嫌违规
17秒前
李健应助骆西西采纳,获得10
18秒前
dy发布了新的文献求助10
20秒前
迅速友容完成签到 ,获得积分10
20秒前
26秒前
英俊的铭应助Tbq采纳,获得10
29秒前
Criminology34举报cwp求助涉嫌违规
30秒前
31秒前
32秒前
33秒前
34秒前
35秒前
35秒前
浮游应助尊敬的芷卉采纳,获得10
36秒前
三岁半完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401107
求助须知:如何正确求助?哪些是违规求助? 4520125
关于积分的说明 14078405
捐赠科研通 4433074
什么是DOI,文献DOI怎么找? 2433990
邀请新用户注册赠送积分活动 1426148
关于科研通互助平台的介绍 1404738