计算机科学
分割
人工智能
编码器
卷积神经网络
变压器
推论
计算机视觉
深度学习
图像分割
Boosting(机器学习)
模式识别(心理学)
物理
量子力学
电压
操作系统
作者
Libo Wang,Rui Li,Ce Zhang,Shenghui Fang,Chenxi Duan,Xiaoliang Meng,Peter M. Atkinson
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing
日期:2022-06-24
卷期号:190: 196-214
被引量:358
标识
DOI:10.1016/j.isprsjprs.2022.06.008
摘要
Semantic segmentation of remotely sensed urban scene images is required in a wide range of practical applications, such as land cover mapping, urban change detection, environmental protection, and economic assessment. Driven by rapid developments in deep learning technologies, the convolutional neural network (CNN) has dominated semantic segmentation for many years. CNN adopts hierarchical feature representation, demonstrating strong capabilities for information extraction. However, the local property of the convolution layer limits the network from capturing the global context. Recently, as a hot topic in the domain of computer vision, Transformer has demonstrated its great potential in global information modelling, boosting many vision-related tasks such as image classification, object detection, and particularly semantic segmentation. In this paper, we propose a Transformer-based decoder and construct an UNet-like Transformer (UNetFormer) for real-time urban scene segmentation. For efficient segmentation, the UNetFormer selects the lightweight ResNet18 as the encoder and develops an efficient global–local attention mechanism to model both global and local information in the decoder. Extensive experiments reveal that our method not only runs faster but also produces higher accuracy compared with state-of-the-art lightweight models. Specifically, the proposed UNetFormer achieved 67.8% and 52.4% mIoU on the UAVid and LoveDA datasets, respectively, while the inference speed can achieve up to 322.4 FPS with a 512 × 512 input on a single NVIDIA GTX 3090 GPU. In further exploration, the proposed Transformer-based decoder combined with a Swin Transformer encoder also achieves the state-of-the-art result (91.3% F1 and 84.1% mIoU) on the Vaihingen dataset. The source code will be freely available at https://github.com/WangLibo1995/GeoSeg.
科研通智能强力驱动
Strongly Powered by AbleSci AI