UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery

计算机科学 分割 人工智能 编码器 卷积神经网络 变压器 推论 计算机视觉 深度学习 图像分割 Boosting(机器学习) 模式识别(心理学) 物理 量子力学 电压 操作系统
作者
Libo Wang,Rui Li,Ce Zhang,Shenghui Fang,Chenxi Duan,Xiaoliang Meng,Peter M. Atkinson
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:190: 196-214 被引量:863
标识
DOI:10.1016/j.isprsjprs.2022.06.008
摘要

Semantic segmentation of remotely sensed urban scene images is required in a wide range of practical applications, such as land cover mapping, urban change detection, environmental protection, and economic assessment. Driven by rapid developments in deep learning technologies, the convolutional neural network (CNN) has dominated semantic segmentation for many years. CNN adopts hierarchical feature representation, demonstrating strong capabilities for information extraction. However, the local property of the convolution layer limits the network from capturing the global context. Recently, as a hot topic in the domain of computer vision, Transformer has demonstrated its great potential in global information modelling, boosting many vision-related tasks such as image classification, object detection, and particularly semantic segmentation. In this paper, we propose a Transformer-based decoder and construct an UNet-like Transformer (UNetFormer) for real-time urban scene segmentation. For efficient segmentation, the UNetFormer selects the lightweight ResNet18 as the encoder and develops an efficient global–local attention mechanism to model both global and local information in the decoder. Extensive experiments reveal that our method not only runs faster but also produces higher accuracy compared with state-of-the-art lightweight models. Specifically, the proposed UNetFormer achieved 67.8% and 52.4% mIoU on the UAVid and LoveDA datasets, respectively, while the inference speed can achieve up to 322.4 FPS with a 512 × 512 input on a single NVIDIA GTX 3090 GPU. In further exploration, the proposed Transformer-based decoder combined with a Swin Transformer encoder also achieves the state-of-the-art result (91.3% F1 and 84.1% mIoU) on the Vaihingen dataset. The source code will be freely available at https://github.com/WangLibo1995/GeoSeg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zrk发布了新的文献求助10
刚刚
sakura发布了新的文献求助10
刚刚
1秒前
1秒前
高高完成签到,获得积分10
1秒前
1秒前
2秒前
踏实汉堡完成签到,获得积分10
2秒前
2秒前
马马发布了新的文献求助10
2秒前
3秒前
3秒前
浮游应助孙朱珠采纳,获得10
3秒前
4秒前
道边的路人甲完成签到,获得积分10
4秒前
窗外的你发布了新的文献求助10
5秒前
耍酷发布了新的文献求助10
5秒前
5秒前
可爱的函函应助荷包蛋采纳,获得10
6秒前
陈陈陈完成签到,获得积分20
6秒前
雷锋发布了新的文献求助10
7秒前
whoKnows应助火火采纳,获得20
7秒前
7秒前
hezaly发布了新的文献求助10
8秒前
斯文败类应助不安的冷荷采纳,获得10
8秒前
我口中说的永远完成签到 ,获得积分10
8秒前
yy发布了新的文献求助10
9秒前
9秒前
9秒前
传奇3应助cwq采纳,获得10
9秒前
赘婿应助cwq采纳,获得10
9秒前
9秒前
充电宝应助cwq采纳,获得10
9秒前
9秒前
李爱国应助cwq采纳,获得10
9秒前
小二郎应助cwq采纳,获得10
9秒前
深情安青应助cwq采纳,获得10
9秒前
大个应助cwq采纳,获得10
10秒前
田様应助cwq采纳,获得10
10秒前
斯文败类应助cwq采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557071
求助须知:如何正确求助?哪些是违规求助? 4642352
关于积分的说明 14667621
捐赠科研通 4583738
什么是DOI,文献DOI怎么找? 2514386
邀请新用户注册赠送积分活动 1488750
关于科研通互助平台的介绍 1459336