UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery

计算机科学 分割 人工智能 编码器 卷积神经网络 变压器 推论 计算机视觉 深度学习 图像分割 Boosting(机器学习) 模式识别(心理学) 量子力学 操作系统 物理 电压
作者
Libo Wang,Rui Li,Ce Zhang,Shenghui Fang,Chenxi Duan,Xiaoliang Meng,Peter M. Atkinson
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:190: 196-214 被引量:608
标识
DOI:10.1016/j.isprsjprs.2022.06.008
摘要

Semantic segmentation of remotely sensed urban scene images is required in a wide range of practical applications, such as land cover mapping, urban change detection, environmental protection, and economic assessment. Driven by rapid developments in deep learning technologies, the convolutional neural network (CNN) has dominated semantic segmentation for many years. CNN adopts hierarchical feature representation, demonstrating strong capabilities for information extraction. However, the local property of the convolution layer limits the network from capturing the global context. Recently, as a hot topic in the domain of computer vision, Transformer has demonstrated its great potential in global information modelling, boosting many vision-related tasks such as image classification, object detection, and particularly semantic segmentation. In this paper, we propose a Transformer-based decoder and construct an UNet-like Transformer (UNetFormer) for real-time urban scene segmentation. For efficient segmentation, the UNetFormer selects the lightweight ResNet18 as the encoder and develops an efficient global–local attention mechanism to model both global and local information in the decoder. Extensive experiments reveal that our method not only runs faster but also produces higher accuracy compared with state-of-the-art lightweight models. Specifically, the proposed UNetFormer achieved 67.8% and 52.4% mIoU on the UAVid and LoveDA datasets, respectively, while the inference speed can achieve up to 322.4 FPS with a 512 × 512 input on a single NVIDIA GTX 3090 GPU. In further exploration, the proposed Transformer-based decoder combined with a Swin Transformer encoder also achieves the state-of-the-art result (91.3% F1 and 84.1% mIoU) on the Vaihingen dataset. The source code will be freely available at https://github.com/WangLibo1995/GeoSeg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹿友绿发布了新的文献求助10
刚刚
伶俐的千柔完成签到,获得积分10
刚刚
科研通AI5应助gwd采纳,获得10
刚刚
797571完成签到,获得积分20
刚刚
完美世界应助嗯呐采纳,获得10
刚刚
Gypsophila完成签到,获得积分10
刚刚
UY完成签到,获得积分10
1秒前
10000完成签到,获得积分10
1秒前
雪L完成签到,获得积分10
1秒前
Charon发布了新的文献求助10
1秒前
一派倾城发布了新的文献求助10
1秒前
花生完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
4秒前
松山湖宗师完成签到,获得积分10
4秒前
May完成签到,获得积分10
4秒前
汉堡包应助jhz采纳,获得10
4秒前
6秒前
砡君完成签到,获得积分10
6秒前
情怀应助Xinzz采纳,获得10
6秒前
6秒前
一派倾城完成签到,获得积分10
6秒前
6秒前
飘飘发布了新的文献求助10
6秒前
XX完成签到,获得积分10
6秒前
单纯的爆米花完成签到,获得积分10
6秒前
JamesPei应助典雅的俊驰采纳,获得10
6秒前
7秒前
充电宝应助zz采纳,获得10
7秒前
蕾蕾完成签到,获得积分20
7秒前
7秒前
hbu123完成签到,获得积分10
7秒前
7秒前
光亮的绿凝关注了科研通微信公众号
7秒前
科研通AI6应助咪咪摸摸采纳,获得10
8秒前
8秒前
8秒前
yzbbb发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475