Nickel-induced charge redistribution in Ni-Fe/Fe3C@nitrogen-doped carbon nanocage as a robust Mott-Schottky bi-functional oxygen catalyst for rechargeable Zn-air battery

过电位 材料科学 析氧 催化作用 电催化剂 紫外光电子能谱 X射线光电子能谱 化学工程 肖特基势垒 电极 化学 光电子学 物理化学 电化学 有机化学 二极管 工程类
作者
Lei Zhang,Bin Wang,Jin‐Song Hu,Xinhua Huang,Wenyu Ma,Nianpeng Li,Thomas Wågberg,Guangzhi Hu
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:625: 521-531 被引量:20
标识
DOI:10.1016/j.jcis.2022.06.067
摘要

Designing earth-abundant and advanced bi-functional oxygen electrodes for efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are extremely urgent but still ambiguous. Thus, metal-semiconductor nanohybrids were developed with functionally integrating ORR-active Ni species, OER-active Fe/Fe3C components, and multifunctional N-doped carbon (NDC) support. Expectantly, the resulted NDC nanocage embedded with Ni-Fe alloy and Fe3C particles, as assembled Mott-Schottky-typed catalyst, delivered a promoted half-wave potential of 0.904 V for ORR and a low overpotential of 315 mV at 10 mA/cm2 for OER both in alkaline media, outperforming those of commercial Pt/C and RuO2 counterparts. Most importantly, the optimized Ni-Fe/Fe3C@NDC sample also afforded a peak power density of 267.5 mW/cm2 with a specific capacity of 773.8 mAh/gZn and excellent durability over 80 h when used as the air electrode in rechargeable Zn-air batteries, superior to the state-of-the-art bi-functional catalysts. Ultraviolet photoelectron spectroscopy revealed that the introduction of Ni into the Fe/Fe3C@NDC component could well manipulate the electronic structure of the designed electrocatalyst, leading to an effective built-in electric field established by the Mott-Schottky heterojunction to expedite the continuous interfacial charge-transfer and thus significantly promote the utilization of electrocatalytic active sites. Therefore, this work provides an avenue for the designing and developing robust and durable Mott-Schottky-typed bi-functional catalysts for promising energy conversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zzz发布了新的文献求助10
2秒前
456发布了新的文献求助20
4秒前
4秒前
如意新晴完成签到,获得积分10
5秒前
Draeck发布了新的文献求助10
6秒前
landuuoo发布了新的文献求助10
6秒前
Miracle完成签到,获得积分10
8秒前
a99887739完成签到,获得积分10
8秒前
领导范儿应助招风鼠采纳,获得10
9秒前
Donby完成签到,获得积分10
9秒前
sapphire_yy发布了新的文献求助10
11秒前
11秒前
xiaotianshi完成签到,获得积分20
13秒前
13秒前
14秒前
wanci应助lvlulu21采纳,获得10
15秒前
16秒前
16秒前
零立方完成签到 ,获得积分10
16秒前
xiaotianshi发布了新的文献求助10
17秒前
汉堡包应助888999采纳,获得10
18秒前
小富婆完成签到,获得积分10
18秒前
Isaac完成签到 ,获得积分10
19秒前
19秒前
疾风知劲草完成签到,获得积分10
20秒前
20秒前
fengfeng完成签到 ,获得积分10
20秒前
22秒前
homie完成签到 ,获得积分10
23秒前
机智剑封完成签到,获得积分10
24秒前
24秒前
25秒前
含糊的念梦完成签到,获得积分10
25秒前
xuyang发布了新的文献求助10
26秒前
务实惜儿发布了新的文献求助10
27秒前
28秒前
28秒前
888999完成签到,获得积分10
28秒前
NexusExplorer应助科研通管家采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135127
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775305
捐赠科研通 2441924
什么是DOI,文献DOI怎么找? 1298299
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600839