石墨氮化碳
异质结
光催化
材料科学
纳米技术
可见光谱
载流子
化学工程
化学
光化学
光电子学
催化作用
有机化学
工程类
作者
I‐Ting Chen,Meng‐Wei Zheng,Ying‐Chih Pu,Shou‐Heng Liu
摘要
A novel Bi2WO6/rGO/3D-GCN composite with 2D/2D/3D heterojunction is synthesized by a simple microwave-assisted method and used as a visible-light-responsive photocatalyst in the CO2 reduction. The chemical properties and morphology of prepared photocatalysts are identified by a variety of analytic tools and spectroscopies. As a result, the heterojuncted Bi2WO6/3D-GCN exhibits superior CO2 reduction performance as compared to the pristine 3D-GCN, which may be caused by the intimate contact between Bi2WO6 and 3D-GCN. The harvest of visible-light absorption, reduced charge transfer resistance and suppressed recombination of electron-hole pairs are accountable for surpassing performance of Bi2WO6/3D-GCN. Upon further incorporation of rGO into Bi2WO6/3D-GCN heterojunction, the photocatalytic production of CO can be notably boosted by ca. 7.9-fold higher than 3D-GCN, suggesting the key contribution of rGO in facilitating the interfacial charge transfer kinetics and increasing CO2 uptake. This work exemplifies a time and energy-saving method to prepare the unique 3D GCN with laminated hexagonal structure which can serve as a shuttle for Bi2WO6 heterojunction and rGO incorporation. This Bi2WO6/rGO/3D-GCN photocatalyst could offer the potential applications in the natural solar conversions of CO2.
科研通智能强力驱动
Strongly Powered by AbleSci AI