Research on opinion polarization by big data analytics capabilities in online social networks

大数据 极化(电化学) 情绪分析 数据科学 计算机科学 社会化媒体 聚类分析 分析 网络爬虫 社交网络(社会语言学) 万维网 数据挖掘 人工智能 物理化学 化学
作者
Yunfei Xing,Xiwei Wang,Chengcheng Qiu,Yueqi Li,Wu He
出处
期刊:Technology in Society [Elsevier BV]
卷期号:68: 101902-101902 被引量:63
标识
DOI:10.1016/j.techsoc.2022.101902
摘要

Opinion polarization in online social networks causes a lot of concerns on its social, economic, and political impacts, and is becoming an important topic for academic research. Based on the system theory, a theoretical framework on analyzing opinion polarization combining big data analytics capabilities (BDAC) is proposed. A web crawler is used to collect data from the Sina Weibo platform on the topic of “Tangping”. Concerning the characteristics of the big data environment, social network analysis (SNA), machine learning, text clustering and content analysis are used to mine opinion polarization of “Tangping” on Weibo. Results show that social network users holding the same opinion indicate the phenomenon of aggregation. Although no influential users support the opinion of “Tangping” on Weibo, a high percentage of people advocate the idea. The supporting group has the most clusters while the opposing group has the highest density of keywords. The research contributes to the existing literature on applying BDAC to analyze online polarization from the perspective of the system from user behavior and interaction to topic clustering and keywords identification. The conceptual system framework shows superiority in the integration of information coordination of microsystem and exosystem. Guidance strategies are put forward to supplement the formation theory of opinion polarization and provide suggestions to reasonably regulate network group polarization. • This paper develops a big data-driven conceptual model based on system theory to investigate the mechanism of opinion polarization on Weibo. • Big data analytics capabilities (BDAC) approaches are used for sentiment analysis, community detection and topics identification on opinion polarization. • This paper aims to understand, measure and quantify online opinion polarization on the controversial issue and put forward guidance for opinion management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lucas应助iiiyyy采纳,获得10
1秒前
wxyshare举报roo0求助涉嫌违规
1秒前
2秒前
Daisy完成签到,获得积分10
2秒前
隐形曼青应助sadwawa采纳,获得10
3秒前
123发布了新的文献求助10
4秒前
Venus66689发布了新的文献求助10
5秒前
淡淡元容发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
范森林发布了新的文献求助20
7秒前
小小怪完成签到,获得积分10
8秒前
10秒前
健壮的凉面完成签到,获得积分10
13秒前
13秒前
宋早楠发布了新的文献求助10
13秒前
JamesPei应助纯真雁菱采纳,获得10
15秒前
神奇小鹿完成签到 ,获得积分10
17秒前
22秒前
小青椒应助gnykdx采纳,获得50
22秒前
23秒前
正己化人应助小小怪采纳,获得10
24秒前
25秒前
阿橘完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
彭于晏应助牛人采纳,获得10
28秒前
研友_8K2QJZ发布了新的文献求助10
29秒前
29秒前
29秒前
情怀应助123采纳,获得10
30秒前
31秒前
LXZ发布了新的文献求助10
31秒前
坚定的戎完成签到,获得积分10
32秒前
孙煜发布了新的文献求助10
33秒前
张延旭发布了新的文献求助10
35秒前
36秒前
搜集达人应助科研通管家采纳,获得10
36秒前
wanci应助科研通管家采纳,获得10
36秒前
隐形曼青应助科研通管家采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124206
求助须知:如何正确求助?哪些是违规求助? 4328520
关于积分的说明 13487475
捐赠科研通 4162916
什么是DOI,文献DOI怎么找? 2281925
邀请新用户注册赠送积分活动 1283217
关于科研通互助平台的介绍 1222406