Research on opinion polarization by big data analytics capabilities in online social networks

大数据 极化(电化学) 情绪分析 数据科学 计算机科学 社会化媒体 聚类分析 分析 网络爬虫 社交网络(社会语言学) 万维网 数据挖掘 人工智能 化学 物理化学
作者
Yunfei Xing,Xiwei Wang,Chengcheng Qiu,Yueqi Li,Wu He
出处
期刊:Technology in Society [Elsevier BV]
卷期号:68: 101902-101902 被引量:52
标识
DOI:10.1016/j.techsoc.2022.101902
摘要

Opinion polarization in online social networks causes a lot of concerns on its social, economic, and political impacts, and is becoming an important topic for academic research. Based on the system theory, a theoretical framework on analyzing opinion polarization combining big data analytics capabilities (BDAC) is proposed. A web crawler is used to collect data from the Sina Weibo platform on the topic of “Tangping”. Concerning the characteristics of the big data environment, social network analysis (SNA), machine learning, text clustering and content analysis are used to mine opinion polarization of “Tangping” on Weibo. Results show that social network users holding the same opinion indicate the phenomenon of aggregation. Although no influential users support the opinion of “Tangping” on Weibo, a high percentage of people advocate the idea. The supporting group has the most clusters while the opposing group has the highest density of keywords. The research contributes to the existing literature on applying BDAC to analyze online polarization from the perspective of the system from user behavior and interaction to topic clustering and keywords identification. The conceptual system framework shows superiority in the integration of information coordination of microsystem and exosystem. Guidance strategies are put forward to supplement the formation theory of opinion polarization and provide suggestions to reasonably regulate network group polarization. • This paper develops a big data-driven conceptual model based on system theory to investigate the mechanism of opinion polarization on Weibo. • Big data analytics capabilities (BDAC) approaches are used for sentiment analysis, community detection and topics identification on opinion polarization. • This paper aims to understand, measure and quantify online opinion polarization on the controversial issue and put forward guidance for opinion management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨中客完成签到,获得积分10
刚刚
体贴的又亦完成签到,获得积分10
1秒前
Wu完成签到,获得积分10
1秒前
tina完成签到,获得积分10
1秒前
2秒前
Lora完成签到,获得积分10
2秒前
怡然小蚂蚁完成签到 ,获得积分10
2秒前
曹中明完成签到,获得积分10
2秒前
3秒前
知乐应助加速采纳,获得10
3秒前
科研公主完成签到,获得积分10
3秒前
格子完成签到,获得积分10
4秒前
zj完成签到,获得积分10
4秒前
俊逸如风完成签到 ,获得积分10
4秒前
SciGPT应助宁萌不酸采纳,获得10
4秒前
顽石完成签到,获得积分10
4秒前
5秒前
冯大哥完成签到,获得积分10
5秒前
5秒前
Mae完成签到 ,获得积分10
7秒前
twob完成签到,获得积分10
8秒前
英吉利25发布了新的文献求助50
8秒前
medzhou完成签到,获得积分10
8秒前
tanghong完成签到,获得积分10
8秒前
蔚岚影落完成签到,获得积分10
8秒前
8秒前
言余完成签到,获得积分10
9秒前
Zo完成签到,获得积分10
9秒前
Eton完成签到,获得积分10
9秒前
哈基米发布了新的文献求助10
9秒前
zhuo完成签到,获得积分10
9秒前
9秒前
herococa应助大观天下采纳,获得10
9秒前
可怜的小羊完成签到,获得积分10
10秒前
Starry发布了新的文献求助10
10秒前
温大林完成签到,获得积分10
10秒前
10秒前
123456完成签到,获得积分10
11秒前
chaobada发布了新的文献求助10
11秒前
么么蛋发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950051
求助须知:如何正确求助?哪些是违规求助? 3495384
关于积分的说明 11076831
捐赠科研通 3225937
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867640
科研通“疑难数据库(出版商)”最低求助积分说明 800855