Research on opinion polarization by big data analytics capabilities in online social networks

大数据 极化(电化学) 情绪分析 数据科学 计算机科学 社会化媒体 聚类分析 分析 网络爬虫 社交网络(社会语言学) 万维网 数据挖掘 人工智能 物理化学 化学
作者
Yunfei Xing,Xiwei Wang,Chengcheng Qiu,Yueqi Li,Wu He
出处
期刊:Technology in Society [Elsevier]
卷期号:68: 101902-101902 被引量:63
标识
DOI:10.1016/j.techsoc.2022.101902
摘要

Opinion polarization in online social networks causes a lot of concerns on its social, economic, and political impacts, and is becoming an important topic for academic research. Based on the system theory, a theoretical framework on analyzing opinion polarization combining big data analytics capabilities (BDAC) is proposed. A web crawler is used to collect data from the Sina Weibo platform on the topic of “Tangping”. Concerning the characteristics of the big data environment, social network analysis (SNA), machine learning, text clustering and content analysis are used to mine opinion polarization of “Tangping” on Weibo. Results show that social network users holding the same opinion indicate the phenomenon of aggregation. Although no influential users support the opinion of “Tangping” on Weibo, a high percentage of people advocate the idea. The supporting group has the most clusters while the opposing group has the highest density of keywords. The research contributes to the existing literature on applying BDAC to analyze online polarization from the perspective of the system from user behavior and interaction to topic clustering and keywords identification. The conceptual system framework shows superiority in the integration of information coordination of microsystem and exosystem. Guidance strategies are put forward to supplement the formation theory of opinion polarization and provide suggestions to reasonably regulate network group polarization. • This paper develops a big data-driven conceptual model based on system theory to investigate the mechanism of opinion polarization on Weibo. • Big data analytics capabilities (BDAC) approaches are used for sentiment analysis, community detection and topics identification on opinion polarization. • This paper aims to understand, measure and quantify online opinion polarization on the controversial issue and put forward guidance for opinion management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的初彤完成签到 ,获得积分10
2秒前
赘婿应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
小青椒应助科研通管家采纳,获得100
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
凤凰应助科研通管家采纳,获得30
3秒前
wanci应助松松松采纳,获得50
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
WB87应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
WB87应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
NiL应助科研通管家采纳,获得10
4秒前
4秒前
英俊的铭应助xxm采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
Hilda007应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
cheese完成签到 ,获得积分10
4秒前
5秒前
5秒前
受伤问凝完成签到 ,获得积分10
8秒前
梨花酒完成签到,获得积分10
10秒前
郭嘉彬发布了新的文献求助10
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
uraylong发布了新的文献求助10
13秒前
14秒前
斯文败类应助DamienC采纳,获得10
15秒前
16秒前
松松松发布了新的文献求助50
17秒前
peaunt发布了新的文献求助10
17秒前
冷酷听枫关注了科研通微信公众号
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425244
求助须知:如何正确求助?哪些是违规求助? 4539333
关于积分的说明 14166974
捐赠科研通 4456649
什么是DOI,文献DOI怎么找? 2444274
邀请新用户注册赠送积分活动 1435255
关于科研通互助平台的介绍 1412637