比例(比率)
代表(政治)
环境科学
计算机科学
地理
作者
Pratiman Patel,Sajad Jamshidi,Raghu Nadimpalli,Daniel G. Aliaga,Gerald Mill s,Fei Chen,Matthias Demuzere,Dev K. Niyogi
摘要
This study evaluates the impact of land surface models (LSMs) and urban heterogeneity [using local climate zones (LCZs)] on air temperature simulated by the Weather Research and Forecasting model (WRF) during a regional extreme event. We simulated the 2017 heatwave over Europe considering four scenarios, using WRF coupled with two LSMs (i.e., Noah and Noah-MP) with default land use/land cover (LULC) and with LCZs from the World Urban Database and Access Portal Tools (WUDAPT). The results showed that implementing the LCZs significantly improves the WRF simulations of the daily temperature regardless of the LSMs. Implementing the LCZs altered the surface energy balance partitioning in the simulations (i.e., the sensible heat flux was reduced and latent heat flux was increased) primarily due to a higher vegetation feedback in the LCZs. The changes in the surface flux translated into an increase in the simulated 2-m relative humidity and 10-m wind speed as well as changed air temperature within cities section and generated a temperature gradient that affected the temperatures beyond the urban regions. Despite these changes, the factor separation analysis indicated that the impact of LSM selection was more significant than the inclusion of LCZs. Interestingly, the lowest bias in temperature simulations was achieved when WRF was coupled with the Noah as the LSM and used WUDAPT as the LULC/urban representation.
科研通智能强力驱动
Strongly Powered by AbleSci AI