The spatial-temporal patterns and multiple driving mechanisms of carbon emissions in the process of urbanization: A case study in Zhejiang, China

城市化 温室气体 中国 环境科学 碳纤维 自然资源经济学 驱动因素 城市规划 人口 面板数据 土地利用 环境保护 环境工程 地理 经济增长 生态学 工程类 经济 土木工程 材料科学 人口学 考古 社会学 复合数 复合材料 计量经济学 生物
作者
Enyan Zhu,Qiuyu Qi,Lisu Chen,Xianhua Wu
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:358: 131954-131954 被引量:63
标识
DOI:10.1016/j.jclepro.2022.131954
摘要

Urbanization has been viewed as an important factor in rapidly increasing carbon emissions. While urbanization relates to various aspects across space and time, a comprehensive assessment of its influences on carbon emission remains scare. In order to explore the multiple effects of urbanization on carbon emissions, a spatial panel data model was applied in this study, by combing nighttime light remote sensing data form 1995 to 2015 in the case of Zhejiang, China. The results showed that on time series, carbon emissions showed an overall trend of growing rapidly first and slowing down then, and its growth rate was closely related to the socio-economic development. Spatially, high carbon emission areas were mainly concentrated in the northeast and eastern coastal areas, while the southwest regions were the main low-carbon emission areas. Furthermore, the investigation of impact factors revealed that the expansion and fragmentation of urban land, augment of the secondary industry, and consumption behavior would lead to growth in carbon emissions, while the connectivity between urban lands, rising of urban population, and residents' low-carbon awareness could promote carbon mitigation. To be noticed, the impact of economic growth on carbon emissions may gradually be weakening as the industry upgrades. Overall, this research has provided a useful insight into the relationship between urbanization and carbon emissions that can support policy makers and urban planners.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李繁蕊发布了新的文献求助10
2秒前
万能图书馆应助愉快寄真采纳,获得10
2秒前
Rrr发布了新的文献求助10
2秒前
3秒前
3秒前
高兴藏花发布了新的文献求助10
3秒前
4秒前
顾闭月发布了新的文献求助10
6秒前
励志小薛完成签到,获得积分20
7秒前
doudou完成签到,获得积分10
7秒前
8秒前
Ting完成签到,获得积分10
9秒前
高兴藏花完成签到 ,获得积分20
9秒前
健忘的沛蓝完成签到 ,获得积分10
9秒前
clear发布了新的文献求助10
10秒前
10秒前
感动傀斗完成签到,获得积分10
10秒前
眼睛大的小鸽子完成签到 ,获得积分10
10秒前
hu完成签到,获得积分10
10秒前
科研通AI5应助顺顺采纳,获得10
10秒前
思源应助shengChen采纳,获得10
11秒前
宁静致远发布了新的文献求助10
12秒前
zhenpeng8888完成签到 ,获得积分10
12秒前
霜序初四完成签到 ,获得积分10
12秒前
13秒前
爆米花应助青木蓝采纳,获得10
13秒前
顾矜应助frank采纳,获得10
14秒前
heavennew完成签到,获得积分10
14秒前
充电宝应助绘梨衣采纳,获得10
15秒前
华仔应助励志小薛采纳,获得10
15秒前
15秒前
15秒前
单薄新烟发布了新的文献求助10
16秒前
16秒前
桐桐应助小王采纳,获得10
16秒前
17秒前
17秒前
17秒前
楚岸发布了新的文献求助10
19秒前
阿强哥20241101完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794