计算机科学
嵌入
缺少数据
数据挖掘
代表(政治)
节点(物理)
机器学习
人工智能
聚类分析
过程(计算)
约束(计算机辅助设计)
理论计算机科学
数学
操作系统
几何学
结构工程
政治
政治学
法学
工程类
作者
Di Jin,Rui Wang,Tao Wang,Dongxiao He,Weiping Ding,Yuxiao Huang,Longbiao Wang,Witold Pedrycz
标识
DOI:10.1109/tcyb.2022.3166539
摘要
Network embedding which aims to learn a low dimensional representation of nodes is a powerful technique for network analysis. While network embedding for networks with complete attributes has been widely investigated, in many real-world applications the attributes of partial nodes are unobserved (i.e., missing) due to privacy concern or resource limit. Very recently, several network embedding methods have been proposed for attribute-missing networks. They first complete the missing attributes and then use the complemented network to learn network embedding. The parameters of these two processes cannot be adjusted by each other, resulting in compromised results. To address this problem, we propose a unified model in which the process of completing missing attributes and the process of learning embedding are not separated but closely intertwined. Being specific, completing missing attributes is under the guidance of learning network representation via mutual information maximization, and the complemented attributes directly enter network representation module which will generate further feedback for completing missing attributes. We further impose attribute-structure relationship constraint for completing missing attributes by designing a new generative adversarial networks (GANs) model. To the best of our knowledge, this is the first unified model for attribute-missing network embedding. Empirical results on real-world datasets show the superiority of our new method over other state-of-the-art methods on four network analysis tasks, including node classification, node clustering, link prediction, and network visualization.
科研通智能强力驱动
Strongly Powered by AbleSci AI