Site-specific scaling of remote sensing-based estimates of woody cover and aboveground biomass for mapping long-term tropical dry forest degradation status

遥感 环境科学 土地退化 卫星图像 生物量(生态学) 合成孔径雷达 土地覆盖 生态系统 土地利用 地理 生态学 生物
作者
Tobias Fremout,Jorge Cobián-De Vinatea,Evert Thomas,Wilson Huaman-Zambrano,Mike H. Salazar Villegas,Daniela Limache-de la Fuente,Paulo N. Bernardino,Rachel Atkinson,Elmar Csaplovics,Bart Muys
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:276: 113040-113040 被引量:17
标识
DOI:10.1016/j.rse.2022.113040
摘要

Remote sensing-based approaches are important for evaluating ecosystem degradation and the efficient planning of ecosystem restoration efforts. However, the large majority of remote sensing-based degradation assessments are trend-based, implying that they can only detect degradation that occurred after medium or high-resolution satellite imagery became available. This makes them less suitable to map long-term degradation in ecosystems that have been under high human pressure since before. The main goal of this study was to develop a robust operational approach to map forest degradation status in heterogeneous landscapes with a long-standing degradation history to inform the planning of restoration interventions. We hereby use the tropical dry forests of Lambayeque, Peru, as a case study. Instead of using a trend-based assessment, we evaluated forest degradation status by comparing current woody cover (WC) and aboveground biomass (AGB) estimates obtained from remote sensing imagery with benchmark values consisting of the 95th percentile WC and AGB values inside environmentally homogenous land capability classes. Using boosted regression tree models and a combination of optical (Sentinel-2) and synthetic aperture radar (Sentinel-1) data of different seasons, we mapped WC and AGB, using training data obtained through very high-resolution imagery and field measurements. Further, we aimed at assessing (i) whether the inclusion of Sentinel-1 data improves mapping accuracy in comparison to using only Sentinel-2 data, and (ii) whether the use of multi-seasonal data improves accuracy in comparison to single-season data. Models combining multi-seasonal Sentinel-1 and Sentinel-2 data resulted in the most accurate WC predictions (mean absolute error (MAE): 16%; MAE normalized by dividing by the inter-quartile range of training data: 26%) and AGB predictions (MAE: 28.6 t/ha; normalized MAE: 65%), but differences in predictive accuracy with single season models or models using only Sentinel-2 data were small. The most accurate models estimated an average WC of 41% and an average AGB of 23.4 t/ha. Average WC and AGB reduction due to degradation was 35% and 36%, respectively, indicating that these forests are highly degraded. The site-specific scaling of WC and AGB allows to efficiently estimate forest degradation status irrespective of the time when this degradation occurred, and to express degradation status against site-specific benchmarks. On the condition that there are still some areas that are sufficiently undegraded to be used as a benchmark, the approach can be used to prioritize forest restoration actions and inform targets for restoration in heterogeneous landscapes suffering the impacts of undocumented long-term degradation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
良辰应助冰糖葫芦不加糖采纳,获得10
刚刚
xxx1234完成签到,获得积分10
刚刚
情怀应助小小灯笼采纳,获得10
1秒前
Kncc完成签到 ,获得积分10
2秒前
2秒前
坦率的寻双完成签到,获得积分10
4秒前
5秒前
congguitar完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
qin希望应助charles采纳,获得30
6秒前
桂花完成签到 ,获得积分10
7秒前
8秒前
慕青应助miku1采纳,获得10
9秒前
9秒前
sdahjjyk发布了新的文献求助10
10秒前
xiaou完成签到,获得积分10
10秒前
花花发布了新的文献求助10
11秒前
枯木完成签到,获得积分10
11秒前
不配.应助纪问安采纳,获得20
11秒前
lazyg5403完成签到,获得积分10
11秒前
Rich_WH发布了新的文献求助10
13秒前
Lucky发布了新的文献求助20
15秒前
我是老大应助Mania采纳,获得20
16秒前
ai化学完成签到,获得积分10
17秒前
sherrycofe应助可可采纳,获得10
18秒前
枯木发布了新的文献求助10
18秒前
科研通AI2S应助DrZ采纳,获得10
18秒前
19秒前
村长热爱美丽完成签到 ,获得积分10
19秒前
20秒前
20秒前
21秒前
21秒前
22秒前
22秒前
23秒前
跳跃尔琴发布了新的文献求助10
23秒前
wt200001发布了新的文献求助10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134819
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773883
捐赠科研通 2441585
什么是DOI,文献DOI怎么找? 1298006
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825