Development and validation of a novel survival prediction model for newly diagnosed lower-grade gliomas

比例危险模型 一致性 队列 胶质瘤 医学 肿瘤科 内科学 列线图 生存分析 癌症研究
作者
Qiang Zhu,Yuan Liang,Ziwen Fan,Yukun Liu,Chunyao Zhou,Hong Zhang,Lei He,Tianshi Li,Jianing Yang,Yanguang Zhou,Jiaxiang Wang,Lei Wang
出处
期刊:Neurosurgical Focus [Journal of Neurosurgery Publishing Group]
卷期号:52 (4): E13-E13 被引量:3
标识
DOI:10.3171/2022.1.focus21596
摘要

OBJECTIVE Diffuse gliomas are the most common primary gliomas with a poor prognosis. This study aimed to develop and validate prognostic models for predicting the survival probability in newly diagnosed lower-grade glioma (LGG) patients. METHODS Detailed data were obtained for newly diagnosed LGG from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) cohorts. Survival was assessed using Cox proportional hazards regression with adjustment for known prognostic factors. The model was established using the TCGA cohort, and independently validated using the CGGA cohort, to predict the 3-, 5-, and 10-year survival probabilities of patients. RESULTS Data from 293 patients with newly diagnosed LGG from the TCGA cohort were used to establish a prognostic model, and from 232 patients with primary LGG in the CGGA cohort to validate the model. Age, tumor grade, molecular subtype, tumor resection, and preoperative neurological deficits were included in the prediction model. The Cox regression model had a satisfactory corrected concordance index of 0.8508, 0.8510, and 0.8516 in the internal bootstrap validation at 3, 5, and 10 years, respectively. The calibration plots demonstrated high consistency of the predicted and observed outcomes. The CGGA cohort was used for external validation and showed satisfactory discrimination of 0.7776, 0.7682, and 0.7051 at 3, 5, and 10 years, respectively. The calibration plots demonstrated an acceptable calibration capability in the external validation. CONCLUSIONS This study established and validated a prognostic model to predict the survival probability of patients with newly diagnosed LGG. The model performed well in discrimination and calibration with ease of use, speed, accessibility, interpretability, and generalizability. An easily used nomogram based on the Cox model was established for clinical application. Moreover, a free, easy-to-use software interface based on the nomogram is provided online.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻的三德完成签到,获得积分10
1秒前
财源滚滚发布了新的文献求助10
1秒前
CodeCraft应助别说话采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
美羊羊完成签到,获得积分10
3秒前
小少发布了新的文献求助10
3秒前
维奈克拉应助ZJX采纳,获得20
3秒前
4秒前
Akim应助幸福电灯胆采纳,获得10
4秒前
ShiXimei发布了新的文献求助10
5秒前
Skye关注了科研通微信公众号
6秒前
西瓜汽水完成签到,获得积分10
6秒前
Scheduling完成签到 ,获得积分10
7秒前
7秒前
pan20完成签到,获得积分10
8秒前
9秒前
dddddd发布了新的文献求助10
9秒前
波波要发sci完成签到 ,获得积分10
9秒前
10秒前
lvbowen发布了新的文献求助10
10秒前
半田清舟发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
丰知然应助健忘以旋采纳,获得10
14秒前
浮游应助美好斓采纳,获得10
14秒前
li发布了新的文献求助10
15秒前
科研通AI2S应助Ryoma采纳,获得10
16秒前
323431发布了新的文献求助10
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
Hello应助zpc采纳,获得30
17秒前
彭泽阳完成签到,获得积分10
17秒前
123发布了新的文献求助10
18秒前
bkagyin应助lvbowen采纳,获得10
18秒前
ZZX发布了新的文献求助30
19秒前
冲浪男孩226完成签到,获得积分10
20秒前
Rottyyii完成签到,获得积分20
21秒前
慕青应助失眠的流沙采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577678
求助须知:如何正确求助?哪些是违规求助? 4662703
关于积分的说明 14743115
捐赠科研通 4603383
什么是DOI,文献DOI怎么找? 2526334
邀请新用户注册赠送积分活动 1496100
关于科研通互助平台的介绍 1465546