The two-dimensional layered semiconductor InSe, with its high carrier mobility, chemical stability, and strong charge transfer ability, plays a crucial role in optoelectronic devices. The number of InSe layers (L) has an important influence on its band structure and optoelectronic properties. Herein we present systematic investigations on few-layer (1L-7L) γ-InSe by optical contrast and Raman spectroscopy. We propose three quantified formulas to quickly identify the layer number using optical contrast, the frequency difference of two A1 modes, and ultralow-frequency Raman spectroscopy, respectively. Moreover, angle-resolved polarization Raman spectra show that γ-InSe is isotropic in the a-b plane. Furthermore, using Raman mapping, we find that the relative strength of the low-frequency interlayer shear modes is particularly sensitive to the interaction between the sample and the substrate.