You Are What You Write: Preserving Privacy in the Era of Large Language Models

计算机科学 差别隐私 对抗制 公制(单位) 私人信息检索 信息敏感性 语言模型 个人可识别信息 信息隐私 数据挖掘 机器学习 人工智能 计算机安全 运营管理 经济
作者
Richard E. Plant,Mario Valerio Giuffrida,Dimitra Gkatzia
出处
期刊:Cornell University - arXiv 被引量:4
标识
DOI:10.48550/arxiv.2204.09391
摘要

Large scale adoption of large language models has introduced a new era of convenient knowledge transfer for a slew of natural language processing tasks. However, these models also run the risk of undermining user trust by exposing unwanted information about the data subjects, which may be extracted by a malicious party, e.g. through adversarial attacks. We present an empirical investigation into the extent of the personal information encoded into pre-trained representations by a range of popular models, and we show a positive correlation between the complexity of a model, the amount of data used in pre-training, and data leakage. In this paper, we present the first wide coverage evaluation and comparison of some of the most popular privacy-preserving algorithms, on a large, multi-lingual dataset on sentiment analysis annotated with demographic information (location, age and gender). The results show since larger and more complex models are more prone to leaking private information, use of privacy-preserving methods is highly desirable. We also find that highly privacy-preserving technologies like differential privacy (DP) can have serious model utility effects, which can be ameliorated using hybrid or metric-DP techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
pcr163应助科研通管家采纳,获得200
刚刚
敏感草丛应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
BareBear应助科研通管家采纳,获得10
刚刚
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
英俊的铭应助Anqing采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
枫叶发布了新的文献求助10
1秒前
渣155136完成签到,获得积分20
1秒前
汉堡包应助yuan采纳,获得10
1秒前
OK发布了新的文献求助10
1秒前
mikiisme完成签到,获得积分10
1秒前
飘逸鞋子完成签到,获得积分10
2秒前
3秒前
愿学的都会完成签到,获得积分10
4秒前
mikiisme发布了新的文献求助30
4秒前
科研通AI2S应助百鳴采纳,获得10
5秒前
灰灰完成签到,获得积分10
6秒前
不想看文献完成签到 ,获得积分10
6秒前
温柔安筠发布了新的文献求助10
7秒前
66完成签到,获得积分10
8秒前
无算浮白完成签到,获得积分10
9秒前
hilm应助kouun采纳,获得20
11秒前
爆米花应助聪慧的山彤采纳,获得10
11秒前
Aurora.H完成签到,获得积分10
11秒前
浮游应助心信鑫采纳,获得10
12秒前
天天喝咖啡完成签到,获得积分10
12秒前
13秒前
ding应助缓慢迎波采纳,获得10
13秒前
勤劳的初柳完成签到,获得积分10
14秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5460749
求助须知:如何正确求助?哪些是违规求助? 4565886
关于积分的说明 14301627
捐赠科研通 4491349
什么是DOI,文献DOI怎么找? 2460286
邀请新用户注册赠送积分活动 1449633
关于科研通互助平台的介绍 1425474