Convolutive Transfer Function-Based Multichannel Nonnegative Matrix Factorization for Overdetermined Blind Source Separation

非负矩阵分解 超定系统 盲信号分离 独立成分分析 数学 源分离 算法 矩阵分解 低秩近似 计算机科学 模式识别(心理学) 人工智能 频道(广播) 应用数学 汉克尔矩阵 量子力学 计算机网络 物理 数学分析 特征向量
作者
Taihui Wang,Feiran Yang,Jun Yang
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 802-815 被引量:27
标识
DOI:10.1109/taslp.2022.3145304
摘要

Most multichannel blind source separation (BSS) approaches rely on a spatial model to encode the transfer functions from sources to microphones and a source model to encode the source power spectral density. The rank-1 spatial model has been widely exploited in independent component analysis (ICA), independent vector analysis (IVA), and independent low-rank matrix analysis (ILRMA). The full-rank spatial model is also considered in many BSS approaches, such as full-rank spatial covariance matrix analysis (FCA), multichannel nonnegative matrix factorization (MNMF), and FastMNMF, which can improve the separation performance in the case of long reverberation times. This paper proposes a new MNMF framework based on the convolutive transfer function (CTF) for overdetermined BSS. The time-domain convolutive mixture model is approximated by a frequency-wise convolutive mixture model instead of the widely adopted frequency-wise instantaneous mixture model. The iterative projection algorithm is adopted to estimate the demixing matrix, and the multiplicative update rule is employed to estimate nonnegative matrix factorization (NMF) parameters. Finally, the source image is reconstructed using a multichannel Wiener filter. The advantages of the proposed method are twofold. First, the CTF approximation enables us to use a short window to represent long impulse responses. Second, the full-rank spatial model can be derived based on the CTF approximation and slowly time-variant source variances, and close relationships between the proposed method and ILRMA, FCA, MNMF and FastMNMF are revealed. Extensive experiments show that the proposed algorithm achieves a higher separation performance than ILRMA and FastMNMF in reverberant environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哎一古完成签到,获得积分10
2秒前
obsession发布了新的文献求助10
3秒前
深情安青应助yaoxueli采纳,获得30
3秒前
归海连碧完成签到,获得积分10
5秒前
5秒前
长白雪茫茫完成签到,获得积分20
7秒前
8秒前
ss发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
zmj应助你好采纳,获得10
9秒前
October完成签到,获得积分10
9秒前
9秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Frank应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
小猴子应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得30
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
共享精神应助科研黑洞采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
ty1996应助科研通管家采纳,获得10
12秒前
风中冰香应助科研通管家采纳,获得10
12秒前
开心鹏涛应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
Frank应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
小猴子应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
无极微光应助科研通管家采纳,获得20
12秒前
Frank应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532279
求助须知:如何正确求助?哪些是违规求助? 4621012
关于积分的说明 14576204
捐赠科研通 4560859
什么是DOI,文献DOI怎么找? 2498989
邀请新用户注册赠送积分活动 1478948
关于科研通互助平台的介绍 1450218