Convolutive Transfer Function-Based Multichannel Nonnegative Matrix Factorization for Overdetermined Blind Source Separation

非负矩阵分解 超定系统 盲信号分离 独立成分分析 数学 源分离 算法 矩阵分解 低秩近似 计算机科学 模式识别(心理学) 人工智能 频道(广播) 应用数学 汉克尔矩阵 量子力学 计算机网络 物理 数学分析 特征向量
作者
Taihui Wang,Feiran Yang,Jun Yang
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 802-815 被引量:27
标识
DOI:10.1109/taslp.2022.3145304
摘要

Most multichannel blind source separation (BSS) approaches rely on a spatial model to encode the transfer functions from sources to microphones and a source model to encode the source power spectral density. The rank-1 spatial model has been widely exploited in independent component analysis (ICA), independent vector analysis (IVA), and independent low-rank matrix analysis (ILRMA). The full-rank spatial model is also considered in many BSS approaches, such as full-rank spatial covariance matrix analysis (FCA), multichannel nonnegative matrix factorization (MNMF), and FastMNMF, which can improve the separation performance in the case of long reverberation times. This paper proposes a new MNMF framework based on the convolutive transfer function (CTF) for overdetermined BSS. The time-domain convolutive mixture model is approximated by a frequency-wise convolutive mixture model instead of the widely adopted frequency-wise instantaneous mixture model. The iterative projection algorithm is adopted to estimate the demixing matrix, and the multiplicative update rule is employed to estimate nonnegative matrix factorization (NMF) parameters. Finally, the source image is reconstructed using a multichannel Wiener filter. The advantages of the proposed method are twofold. First, the CTF approximation enables us to use a short window to represent long impulse responses. Second, the full-rank spatial model can be derived based on the CTF approximation and slowly time-variant source variances, and close relationships between the proposed method and ILRMA, FCA, MNMF and FastMNMF are revealed. Extensive experiments show that the proposed algorithm achieves a higher separation performance than ILRMA and FastMNMF in reverberant environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
悦耳黑夜完成签到 ,获得积分10
2秒前
2秒前
GPTea应助123采纳,获得20
2秒前
upupup完成签到,获得积分10
3秒前
3秒前
玉山发布了新的文献求助10
3秒前
3秒前
冯雨宁完成签到,获得积分10
3秒前
5秒前
木木夕发布了新的文献求助10
5秒前
5秒前
5秒前
liss完成签到 ,获得积分10
6秒前
7秒前
7秒前
桐桐应助101采纳,获得30
7秒前
7秒前
7秒前
yu发布了新的文献求助10
8秒前
LC完成签到,获得积分10
8秒前
ZhouZhou发布了新的文献求助10
8秒前
8秒前
kiide完成签到,获得积分10
9秒前
10秒前
11秒前
wangli发布了新的文献求助10
12秒前
ppprotein发布了新的文献求助10
12秒前
zx发布了新的文献求助10
13秒前
上官若男应助阔达的冷霜采纳,获得10
13秒前
Owen应助不冬眠采纳,获得10
13秒前
SCL发布了新的文献求助10
13秒前
研友_nPoXoL发布了新的文献求助10
13秒前
14秒前
14秒前
koi完成签到,获得积分20
15秒前
FashionBoy应助小p采纳,获得30
15秒前
dmm完成签到,获得积分10
15秒前
ZHG完成签到,获得积分10
16秒前
Q11发布了新的文献求助10
16秒前
希望天下0贩的0应助虾虾采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492432
求助须知:如何正确求助?哪些是违规求助? 4590523
关于积分的说明 14430879
捐赠科研通 4522998
什么是DOI,文献DOI怎么找? 2478115
邀请新用户注册赠送积分活动 1463158
关于科研通互助平台的介绍 1435830