Convolutive Transfer Function-Based Multichannel Nonnegative Matrix Factorization for Overdetermined Blind Source Separation

非负矩阵分解 超定系统 盲信号分离 独立成分分析 数学 源分离 算法 矩阵分解 低秩近似 计算机科学 模式识别(心理学) 人工智能 频道(广播) 应用数学 汉克尔矩阵 量子力学 计算机网络 物理 数学分析 特征向量
作者
Taihui Wang,Feiran Yang,Jun Yang
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 802-815 被引量:27
标识
DOI:10.1109/taslp.2022.3145304
摘要

Most multichannel blind source separation (BSS) approaches rely on a spatial model to encode the transfer functions from sources to microphones and a source model to encode the source power spectral density. The rank-1 spatial model has been widely exploited in independent component analysis (ICA), independent vector analysis (IVA), and independent low-rank matrix analysis (ILRMA). The full-rank spatial model is also considered in many BSS approaches, such as full-rank spatial covariance matrix analysis (FCA), multichannel nonnegative matrix factorization (MNMF), and FastMNMF, which can improve the separation performance in the case of long reverberation times. This paper proposes a new MNMF framework based on the convolutive transfer function (CTF) for overdetermined BSS. The time-domain convolutive mixture model is approximated by a frequency-wise convolutive mixture model instead of the widely adopted frequency-wise instantaneous mixture model. The iterative projection algorithm is adopted to estimate the demixing matrix, and the multiplicative update rule is employed to estimate nonnegative matrix factorization (NMF) parameters. Finally, the source image is reconstructed using a multichannel Wiener filter. The advantages of the proposed method are twofold. First, the CTF approximation enables us to use a short window to represent long impulse responses. Second, the full-rank spatial model can be derived based on the CTF approximation and slowly time-variant source variances, and close relationships between the proposed method and ILRMA, FCA, MNMF and FastMNMF are revealed. Extensive experiments show that the proposed algorithm achieves a higher separation performance than ILRMA and FastMNMF in reverberant environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jennifer发布了新的文献求助30
1秒前
2秒前
咩咩兔发布了新的文献求助10
2秒前
Zachary发布了新的文献求助10
3秒前
刘子龙完成签到,获得积分10
3秒前
Desperado发布了新的文献求助10
4秒前
5秒前
5秒前
hhdr完成签到 ,获得积分10
7秒前
fjnm发布了新的文献求助10
7秒前
pan liu完成签到,获得积分10
8秒前
义气凝阳发布了新的文献求助10
8秒前
林妹妹完成签到 ,获得积分10
12秒前
chenqiumu应助羽毛采纳,获得30
15秒前
Arwin发布了新的文献求助10
15秒前
15秒前
萝卜猪完成签到,获得积分10
16秒前
cqbrain123完成签到,获得积分10
16秒前
小龙完成签到,获得积分10
18秒前
20秒前
高贵的晓筠完成签到 ,获得积分10
21秒前
21秒前
英俊的铭应助孤独乐瑶采纳,获得10
22秒前
慕青应助yyyf采纳,获得10
23秒前
充电宝应助XYN1采纳,获得10
25秒前
天机鲁比发布了新的文献求助10
25秒前
魔幻的溪流完成签到 ,获得积分10
26秒前
26秒前
炙热的香芦完成签到,获得积分10
27秒前
szj发布了新的文献求助10
28秒前
29秒前
学分完成签到 ,获得积分10
29秒前
xxxxxxxxx发布了新的文献求助10
30秒前
小二郎应助天机鲁比采纳,获得10
30秒前
儒雅的数据线完成签到 ,获得积分10
31秒前
31秒前
33秒前
一二完成签到,获得积分10
33秒前
Vv发布了新的文献求助10
34秒前
chenqiumu应助义气凝阳采纳,获得30
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271770
求助须知:如何正确求助?哪些是违规求助? 4429311
关于积分的说明 13788207
捐赠科研通 4307656
什么是DOI,文献DOI怎么找? 2363689
邀请新用户注册赠送积分活动 1359366
关于科研通互助平台的介绍 1322346