亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolutive Transfer Function-Based Multichannel Nonnegative Matrix Factorization for Overdetermined Blind Source Separation

非负矩阵分解 超定系统 盲信号分离 独立成分分析 数学 源分离 算法 矩阵分解 低秩近似 计算机科学 模式识别(心理学) 人工智能 频道(广播) 应用数学 汉克尔矩阵 量子力学 计算机网络 物理 数学分析 特征向量
作者
Taihui Wang,Feiran Yang,Jun Yang
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 802-815 被引量:27
标识
DOI:10.1109/taslp.2022.3145304
摘要

Most multichannel blind source separation (BSS) approaches rely on a spatial model to encode the transfer functions from sources to microphones and a source model to encode the source power spectral density. The rank-1 spatial model has been widely exploited in independent component analysis (ICA), independent vector analysis (IVA), and independent low-rank matrix analysis (ILRMA). The full-rank spatial model is also considered in many BSS approaches, such as full-rank spatial covariance matrix analysis (FCA), multichannel nonnegative matrix factorization (MNMF), and FastMNMF, which can improve the separation performance in the case of long reverberation times. This paper proposes a new MNMF framework based on the convolutive transfer function (CTF) for overdetermined BSS. The time-domain convolutive mixture model is approximated by a frequency-wise convolutive mixture model instead of the widely adopted frequency-wise instantaneous mixture model. The iterative projection algorithm is adopted to estimate the demixing matrix, and the multiplicative update rule is employed to estimate nonnegative matrix factorization (NMF) parameters. Finally, the source image is reconstructed using a multichannel Wiener filter. The advantages of the proposed method are twofold. First, the CTF approximation enables us to use a short window to represent long impulse responses. Second, the full-rank spatial model can be derived based on the CTF approximation and slowly time-variant source variances, and close relationships between the proposed method and ILRMA, FCA, MNMF and FastMNMF are revealed. Extensive experiments show that the proposed algorithm achieves a higher separation performance than ILRMA and FastMNMF in reverberant environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
彭于晏应助世良采纳,获得10
2秒前
2秒前
7秒前
8秒前
GIA完成签到,获得积分10
10秒前
饭团不吃鱼完成签到,获得积分10
18秒前
ceeray23应助科研通管家采纳,获得10
25秒前
ceeray23应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
ceeray23应助科研通管家采纳,获得10
25秒前
26秒前
26秒前
炙热的雪糕完成签到,获得积分10
28秒前
gbb发布了新的文献求助10
30秒前
LXZ发布了新的文献求助10
33秒前
willlee完成签到 ,获得积分10
33秒前
34秒前
36秒前
脑洞疼应助哈皮波采纳,获得10
37秒前
世良发布了新的文献求助10
42秒前
42秒前
gbb完成签到,获得积分10
42秒前
体贴花卷发布了新的文献求助10
45秒前
ddddddd完成签到 ,获得积分10
46秒前
49秒前
51秒前
哈皮波发布了新的文献求助10
52秒前
暖暖完成签到,获得积分10
54秒前
哈皮波完成签到,获得积分10
1分钟前
1分钟前
西安浴日光能赵炜完成签到,获得积分10
1分钟前
1分钟前
搜集达人应助体贴花卷采纳,获得10
1分钟前
1分钟前
科研通AI6应助xiaozhou采纳,获得10
1分钟前
Lifel完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Ava应助xiaozhou采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650806
求助须知:如何正确求助?哪些是违规求助? 4781743
关于积分的说明 15052599
捐赠科研通 4809617
什么是DOI,文献DOI怎么找? 2572419
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487399