Convolutive Transfer Function-Based Multichannel Nonnegative Matrix Factorization for Overdetermined Blind Source Separation

非负矩阵分解 超定系统 盲信号分离 独立成分分析 数学 源分离 算法 矩阵分解 低秩近似 计算机科学 模式识别(心理学) 人工智能 频道(广播) 应用数学 汉克尔矩阵 量子力学 计算机网络 物理 数学分析 特征向量
作者
Taihui Wang,Feiran Yang,Jun Yang
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 802-815 被引量:27
标识
DOI:10.1109/taslp.2022.3145304
摘要

Most multichannel blind source separation (BSS) approaches rely on a spatial model to encode the transfer functions from sources to microphones and a source model to encode the source power spectral density. The rank-1 spatial model has been widely exploited in independent component analysis (ICA), independent vector analysis (IVA), and independent low-rank matrix analysis (ILRMA). The full-rank spatial model is also considered in many BSS approaches, such as full-rank spatial covariance matrix analysis (FCA), multichannel nonnegative matrix factorization (MNMF), and FastMNMF, which can improve the separation performance in the case of long reverberation times. This paper proposes a new MNMF framework based on the convolutive transfer function (CTF) for overdetermined BSS. The time-domain convolutive mixture model is approximated by a frequency-wise convolutive mixture model instead of the widely adopted frequency-wise instantaneous mixture model. The iterative projection algorithm is adopted to estimate the demixing matrix, and the multiplicative update rule is employed to estimate nonnegative matrix factorization (NMF) parameters. Finally, the source image is reconstructed using a multichannel Wiener filter. The advantages of the proposed method are twofold. First, the CTF approximation enables us to use a short window to represent long impulse responses. Second, the full-rank spatial model can be derived based on the CTF approximation and slowly time-variant source variances, and close relationships between the proposed method and ILRMA, FCA, MNMF and FastMNMF are revealed. Extensive experiments show that the proposed algorithm achieves a higher separation performance than ILRMA and FastMNMF in reverberant environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
认真乐双发布了新的文献求助10
刚刚
1秒前
1秒前
忧伤的盼秋完成签到,获得积分10
2秒前
2秒前
YeMa发布了新的文献求助10
2秒前
2秒前
3秒前
123完成签到 ,获得积分10
3秒前
LOVE0077完成签到,获得积分10
3秒前
英姑应助cannice采纳,获得10
4秒前
充电宝应助zhs采纳,获得10
4秒前
王博龙完成签到 ,获得积分10
4秒前
4秒前
之贻发布了新的文献求助10
5秒前
www完成签到,获得积分20
5秒前
HJQ发布了新的文献求助10
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
研友_Z6k5Q8发布了新的文献求助10
7秒前
7秒前
www发布了新的文献求助10
8秒前
8秒前
hanyangyang完成签到,获得积分10
8秒前
吃定彩虹关注了科研通微信公众号
8秒前
科目三应助乐乐采纳,获得10
9秒前
coco234完成签到,获得积分10
10秒前
NineLiar完成签到,获得积分10
10秒前
ZS发布了新的文献求助10
10秒前
Zorion发布了新的文献求助10
10秒前
乐观依云发布了新的文献求助10
10秒前
wise111发布了新的文献求助10
11秒前
11秒前
LJ发布了新的文献求助10
11秒前
12秒前
13秒前
菠萝吹雪发布了新的文献求助10
13秒前
ljact完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769