已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Convolutive Transfer Function-Based Multichannel Nonnegative Matrix Factorization for Overdetermined Blind Source Separation

非负矩阵分解 超定系统 盲信号分离 独立成分分析 数学 源分离 算法 矩阵分解 低秩近似 计算机科学 模式识别(心理学) 人工智能 频道(广播) 应用数学 汉克尔矩阵 量子力学 计算机网络 物理 数学分析 特征向量
作者
Taihui Wang,Feiran Yang,Jun Yang
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 802-815 被引量:27
标识
DOI:10.1109/taslp.2022.3145304
摘要

Most multichannel blind source separation (BSS) approaches rely on a spatial model to encode the transfer functions from sources to microphones and a source model to encode the source power spectral density. The rank-1 spatial model has been widely exploited in independent component analysis (ICA), independent vector analysis (IVA), and independent low-rank matrix analysis (ILRMA). The full-rank spatial model is also considered in many BSS approaches, such as full-rank spatial covariance matrix analysis (FCA), multichannel nonnegative matrix factorization (MNMF), and FastMNMF, which can improve the separation performance in the case of long reverberation times. This paper proposes a new MNMF framework based on the convolutive transfer function (CTF) for overdetermined BSS. The time-domain convolutive mixture model is approximated by a frequency-wise convolutive mixture model instead of the widely adopted frequency-wise instantaneous mixture model. The iterative projection algorithm is adopted to estimate the demixing matrix, and the multiplicative update rule is employed to estimate nonnegative matrix factorization (NMF) parameters. Finally, the source image is reconstructed using a multichannel Wiener filter. The advantages of the proposed method are twofold. First, the CTF approximation enables us to use a short window to represent long impulse responses. Second, the full-rank spatial model can be derived based on the CTF approximation and slowly time-variant source variances, and close relationships between the proposed method and ILRMA, FCA, MNMF and FastMNMF are revealed. Extensive experiments show that the proposed algorithm achieves a higher separation performance than ILRMA and FastMNMF in reverberant environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏映菡发布了新的文献求助10
1秒前
1秒前
4秒前
cyt9999发布了新的文献求助10
4秒前
hehe发布了新的文献求助10
4秒前
5秒前
科研通AI6应助janie采纳,获得10
5秒前
华仔应助janie采纳,获得10
5秒前
7秒前
Liz发布了新的文献求助10
9秒前
12秒前
abab完成签到 ,获得积分10
16秒前
16秒前
16秒前
安详的海风完成签到,获得积分10
18秒前
20秒前
天天快乐应助科研通管家采纳,获得30
21秒前
21秒前
ding应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
123456发布了新的文献求助10
21秒前
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
24秒前
钙钛矿狗完成签到,获得积分10
25秒前
酷炫果汁完成签到 ,获得积分10
25秒前
27秒前
拓跋从阳发布了新的文献求助10
31秒前
hao完成签到,获得积分10
31秒前
31秒前
33秒前
33秒前
WYK完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627439
求助须知:如何正确求助?哪些是违规求助? 4713759
关于积分的说明 14962257
捐赠科研通 4784702
什么是DOI,文献DOI怎么找? 2554869
邀请新用户注册赠送积分活动 1516352
关于科研通互助平台的介绍 1476696