电催化剂
丙醇
电合成
法拉第效率
催化作用
钌
一氧化碳
选择性
材料科学
铜
化学
甲醇
电化学
无机化学
物理化学
有机化学
电极
作者
Xue Wang,Pengfei Ou,Adnan Ozden,Sung‐Fu Hung,Jason Tam,Christine M. Gabardo,Jane Y. Howe,Jared Sisler,Koen Bertens,F. Pelayo Garcı́a de Arquer,Rui Kai Miao,Colin P. O’Brien,Ziyun Wang,Jehad Abed,Armin Sedighian Rasouli,Meng‐Jia Sun,Alexander H. Ip,David Sinton,Edward H. Sargent
出处
期刊:Nature Energy
[Springer Nature]
日期:2022-02-10
卷期号:7 (2): 170-176
被引量:152
标识
DOI:10.1038/s41560-021-00967-7
摘要
The high-energy-density C3 fuel n-propanol is desired from CO2/CO electroreduction, as evidenced by propanol’s high market price per tonne (approximately US$ 1,400–1,600). However, CO electroreduction to n-propanol has shown low selectivity, limited production rates and poor stability. Here we report catalysts, identified using computational screening, that simultaneously facilitate multiple carbon–carbon coupling, stabilize C2 intermediates and promote CO adsorption, all leading to improved n-propanol electrosynthesis. Experimentally we construct the predicted optimal electrocatalyst based on silver–ruthenium co-doped copper. We achieve, at 300 mA cm−2, a high n-propanol Faradaic efficiency of 36% ± 3%, a C2+ Faradaic efficiency of 93% and single-pass CO conversion of 85%. The system exhibits 100 h stable n-propanol electrosynthesis. Technoeconomic analysis based on the performance of the pilot system projects profitability.
科研通智能强力驱动
Strongly Powered by AbleSci AI