A predictive nomogram for intracerebral hematoma expansion based on non-contrast computed tomography and clinical features

列线图 医学 计算机断层摄影术 神经外科 脑出血 对比度(视觉) 放射科 脑内血肿 神经组阅片室 血肿 断层摄影术 内科学 外科 神经学 蛛网膜下腔出血 人工智能 精神科 计算机科学
作者
Xiuping Zhang,Qianqian Gao,Kaidong Chen,Qiuxiang Wu,Bixue Chen,Shangyu Zeng,Xiangming Fang
出处
期刊:Neuroradiology [Springer Nature]
卷期号:64 (8): 1547-1556 被引量:3
标识
DOI:10.1007/s00234-022-02899-9
摘要

To develop and validate a new nomogram utilizing non-contrast computed tomography (NCCT) signs and clinical factors for predicting hematoma expansion (HE) in patients with spontaneous intracerebral hemorrhage (ICH).HE was defined as > 6 mL or 33% increase in baseline hematoma volume. Multivariable logistic regression analysis was performed to identify the predictors of HE. The discriminatory performance of the proposed model was evaluated via receiver operation characteristic (ROC) analysis, and the predictive accuracy was assessed by a calibration curve. The nomogram was established by R programming language. The decision curve analysis and clinical impact curve were drawn according to the related risk factors.A total of 506 patients with spontaneous ICH were recruited in the development cohort, and 103 patients were registered as the external validation cohort. Among the development cohort, 132 (26.09%) experienced HE. Glasgow coma scale (GCS) (P < 0.001), neutrophil to lymphocyte ratio (NLR) (P < 0.001), blend sign (P < 0.001), swirl sign (P < 0.001), and hypodensities (P = 0.003) were significant predictors of HE, by which were used to establish the nomogram. The model demonstrated good performance with high area under the curve both in the development (AUC = 0.908; 95% confidence interval, 0.880-0.936) and the external validation (AUC = 0.844; 95% confidence interval, 0.760-0.908) cohort. The calibration curve illustrated a high accuracy for HE prediction.The nomogram derived from NCCT markers and clinical factors outperformed the NCCT signs-only model in predicting HE for patients with ICH, thus providing an effective and noninvasive tool for the risk stratification of HE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
3秒前
4秒前
今晚睇paper完成签到,获得积分10
4秒前
Gzqq完成签到,获得积分10
5秒前
pcx发布了新的文献求助10
5秒前
WD发布了新的文献求助10
6秒前
7秒前
丘比特应助飞羽采纳,获得10
7秒前
山丘发布了新的文献求助10
7秒前
7秒前
9秒前
伊酒应助迪丽热巴采纳,获得10
11秒前
yunnn发布了新的文献求助100
14秒前
鱼鱼鱼发布了新的文献求助10
16秒前
苏卿应助帅过彭于晏采纳,获得10
17秒前
17秒前
qy发布了新的文献求助10
19秒前
yyyy发布了新的文献求助30
20秒前
夏日随笔完成签到 ,获得积分10
22秒前
劲秉应助大方荷花采纳,获得20
23秒前
CipherSage应助李温采纳,获得10
25秒前
26秒前
曲佳鑫完成签到 ,获得积分10
26秒前
wuludie应助1699Z采纳,获得10
26秒前
劲秉应助蓝愿采纳,获得10
27秒前
ww完成签到,获得积分10
27秒前
麦克斯韦的小妖完成签到 ,获得积分10
27秒前
RiderDaniel完成签到,获得积分20
27秒前
伊酒应助迪丽热巴采纳,获得10
27秒前
脑洞疼应助魔幻的寻雪采纳,获得10
27秒前
旭琦发布了新的文献求助10
29秒前
Jasper应助江城子采纳,获得10
30秒前
小白鞋完成签到 ,获得积分10
30秒前
ossantu发布了新的文献求助10
31秒前
feifei264837完成签到 ,获得积分10
32秒前
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469956
求助须知:如何正确求助?哪些是违规求助? 3063190
关于积分的说明 9081720
捐赠科研通 2753389
什么是DOI,文献DOI怎么找? 1510860
邀请新用户注册赠送积分活动 698134
科研通“疑难数据库(出版商)”最低求助积分说明 698056