Machine learning trained with quantitative susceptibility mapping to detect mild cognitive impairment in Parkinson's disease

帕金森病 认知 认知障碍 医学 物理医学与康复 内科学 听力学 神经科学 心理学 疾病
作者
Haruto Shibata,Yuto Uchida,Shohei Inui,Hirohito Kan,Keita Sakurai,Naoya Oishi,Yoshino Ueki,Kenichi Oishi,Noriyuki Matsukawa
出处
期刊:Parkinsonism & Related Disorders [Elsevier]
卷期号:94: 104-110 被引量:20
标识
DOI:10.1016/j.parkreldis.2021.12.004
摘要

Cognitive decline is commonly observed in Parkinson's disease (PD). Identifying PD with mild cognitive impairment (PD-MCI) is crucial for early initiation of therapeutic interventions and preventing cognitive decline.We aimed to develop a machine learning model trained with magnetic susceptibility values based on the multi-atlas label-fusion method to classify PD without dementia into PD-MCI and normal cognition (PD-CN).This multicenter observational cohort study retrospectively reviewed 61 PD-MCI and 59 PD-CN cases for the internal validation cohort and 22 PD-MCI and 21 PD-CN cases for the external validation cohort. The multi-atlas method parcellated the quantitative susceptibility mapping (QSM) images into 20 regions of interest and extracted QSM-based magnetic susceptibility values. Random forest, extreme gradient boosting, and light gradient boosting were selected as machine learning algorithms.All classifiers demonstrated substantial performances in the classification task, particularly the random forest model. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve for this model were 79.1%, 77.3%, 81.0%, and 0.78, respectively. The QSM values in the caudate nucleus, which were important features, were inversely correlated with the Montreal Cognitive Assessment scores (right caudate nucleus: r = -0.573, 95% CI: -0.801 to -0.298, p = 0.003; left caudate nucleus: r = -0.659, 95% CI: -0.894 to -0.392, p < 0.001).Machine learning models trained with QSM values successfully classified PD without dementia into PD-MCI and PD-CN groups, suggesting the potential of QSM values as an auxiliary biomarker for early evaluation of cognitive decline in patients with PD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MADKAI发布了新的文献求助10
刚刚
刚刚
贪玩丸子完成签到,获得积分10
刚刚
神勇的雅香应助liutaili采纳,获得10
1秒前
KSGGS完成签到,获得积分10
1秒前
YANG关注了科研通微信公众号
1秒前
2秒前
2秒前
2秒前
99发布了新的文献求助10
3秒前
3秒前
科研通AI5应助qi采纳,获得10
3秒前
乐乐发布了新的文献求助10
4秒前
铸一字错发布了新的文献求助10
4秒前
受伤书文完成签到,获得积分10
5秒前
Yvonne发布了新的文献求助10
5秒前
5秒前
温柔的十三完成签到,获得积分10
5秒前
Ll发布了新的文献求助10
6秒前
nikai发布了新的文献求助10
6秒前
圣晟胜发布了新的文献求助10
6秒前
大个应助科研通管家采纳,获得10
6秒前
6秒前
田様应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
Leif应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
shouyu29应助科研通管家采纳,获得10
7秒前
7秒前
小金应助科研通管家采纳,获得20
7秒前
牛逼的昂完成签到,获得积分10
7秒前
muzi给muzi的求助进行了留言
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
7秒前
Jasper应助科研通管家采纳,获得10
8秒前
yuhang完成签到 ,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759