Machine learning trained with quantitative susceptibility mapping to detect mild cognitive impairment in Parkinson's disease

帕金森病 认知 认知障碍 医学 物理医学与康复 内科学 听力学 神经科学 心理学 疾病
作者
Haruto Shibata,Yuto Uchida,Shohei Inui,Hirohito Kan,Keita Sakurai,Naoya Oishi,Yoshino Ueki,Kenichi Oishi,Noriyuki Matsukawa
出处
期刊:Parkinsonism & Related Disorders [Elsevier BV]
卷期号:94: 104-110 被引量:20
标识
DOI:10.1016/j.parkreldis.2021.12.004
摘要

Cognitive decline is commonly observed in Parkinson's disease (PD). Identifying PD with mild cognitive impairment (PD-MCI) is crucial for early initiation of therapeutic interventions and preventing cognitive decline.We aimed to develop a machine learning model trained with magnetic susceptibility values based on the multi-atlas label-fusion method to classify PD without dementia into PD-MCI and normal cognition (PD-CN).This multicenter observational cohort study retrospectively reviewed 61 PD-MCI and 59 PD-CN cases for the internal validation cohort and 22 PD-MCI and 21 PD-CN cases for the external validation cohort. The multi-atlas method parcellated the quantitative susceptibility mapping (QSM) images into 20 regions of interest and extracted QSM-based magnetic susceptibility values. Random forest, extreme gradient boosting, and light gradient boosting were selected as machine learning algorithms.All classifiers demonstrated substantial performances in the classification task, particularly the random forest model. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve for this model were 79.1%, 77.3%, 81.0%, and 0.78, respectively. The QSM values in the caudate nucleus, which were important features, were inversely correlated with the Montreal Cognitive Assessment scores (right caudate nucleus: r = -0.573, 95% CI: -0.801 to -0.298, p = 0.003; left caudate nucleus: r = -0.659, 95% CI: -0.894 to -0.392, p < 0.001).Machine learning models trained with QSM values successfully classified PD without dementia into PD-MCI and PD-CN groups, suggesting the potential of QSM values as an auxiliary biomarker for early evaluation of cognitive decline in patients with PD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
sfwrbh发布了新的文献求助10
1秒前
徐昊雯发布了新的文献求助10
1秒前
科研通AI2S应助wxy采纳,获得10
1秒前
mutong发布了新的文献求助10
1秒前
lx完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助50
2秒前
2秒前
ze发布了新的文献求助10
2秒前
慕子默发布了新的文献求助20
2秒前
3秒前
3秒前
甜美鬼神发布了新的文献求助10
3秒前
3秒前
飘逸凝丝发布了新的文献求助10
3秒前
昱旻发布了新的文献求助10
3秒前
lxyy应助西大喜采纳,获得10
4秒前
夜雨潇潇完成签到,获得积分10
4秒前
4秒前
ly发布了新的文献求助10
5秒前
善学以致用应助林一木采纳,获得10
5秒前
兰彻完成签到,获得积分10
5秒前
6秒前
何大青完成签到,获得积分10
6秒前
6秒前
还单身的访曼完成签到,获得积分20
6秒前
7秒前
Morois发布了新的文献求助10
7秒前
8秒前
Orange应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
苗苗发布了新的文献求助10
8秒前
所所应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
DijiaXu应助科研通管家采纳,获得20
8秒前
lxyy应助xueyan采纳,获得10
8秒前
hh发布了新的文献求助30
8秒前
温柔雪巧完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437