已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning trained with quantitative susceptibility mapping to detect mild cognitive impairment in Parkinson's disease

帕金森病 认知 认知障碍 医学 物理医学与康复 内科学 听力学 神经科学 心理学 疾病
作者
Haruto Shibata,Yuto Uchida,Shohei Inui,Hirohito Kan,Keita Sakurai,Naoya Oishi,Yoshino Ueki,Kenichi Oishi,Noriyuki Matsukawa
出处
期刊:Parkinsonism & Related Disorders [Elsevier]
卷期号:94: 104-110 被引量:20
标识
DOI:10.1016/j.parkreldis.2021.12.004
摘要

Cognitive decline is commonly observed in Parkinson's disease (PD). Identifying PD with mild cognitive impairment (PD-MCI) is crucial for early initiation of therapeutic interventions and preventing cognitive decline.We aimed to develop a machine learning model trained with magnetic susceptibility values based on the multi-atlas label-fusion method to classify PD without dementia into PD-MCI and normal cognition (PD-CN).This multicenter observational cohort study retrospectively reviewed 61 PD-MCI and 59 PD-CN cases for the internal validation cohort and 22 PD-MCI and 21 PD-CN cases for the external validation cohort. The multi-atlas method parcellated the quantitative susceptibility mapping (QSM) images into 20 regions of interest and extracted QSM-based magnetic susceptibility values. Random forest, extreme gradient boosting, and light gradient boosting were selected as machine learning algorithms.All classifiers demonstrated substantial performances in the classification task, particularly the random forest model. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve for this model were 79.1%, 77.3%, 81.0%, and 0.78, respectively. The QSM values in the caudate nucleus, which were important features, were inversely correlated with the Montreal Cognitive Assessment scores (right caudate nucleus: r = -0.573, 95% CI: -0.801 to -0.298, p = 0.003; left caudate nucleus: r = -0.659, 95% CI: -0.894 to -0.392, p < 0.001).Machine learning models trained with QSM values successfully classified PD without dementia into PD-MCI and PD-CN groups, suggesting the potential of QSM values as an auxiliary biomarker for early evaluation of cognitive decline in patients with PD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助yunzheng采纳,获得10
刚刚
Yulanda完成签到,获得积分10
1秒前
xxx完成签到,获得积分10
2秒前
liulu完成签到 ,获得积分10
6秒前
王富贵发布了新的文献求助10
7秒前
7秒前
rainbowbaby发布了新的文献求助10
8秒前
8秒前
Z小姐完成签到 ,获得积分10
8秒前
FashionBoy应助279采纳,获得10
8秒前
英勇的梨愁完成签到 ,获得积分10
9秒前
9秒前
10秒前
11秒前
诚心的凛发布了新的文献求助10
11秒前
Ibuprofen发布了新的文献求助10
13秒前
4114发布了新的文献求助10
13秒前
大个应助zzg采纳,获得10
14秒前
14秒前
阿泽完成签到,获得积分10
14秒前
wx完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
yunzheng发布了新的文献求助10
18秒前
21秒前
华仔应助搞怪的紫雪采纳,获得10
22秒前
张静完成签到 ,获得积分10
23秒前
23秒前
领导范儿应助Bless采纳,获得30
24秒前
24秒前
我是老大应助4114采纳,获得10
24秒前
24秒前
浮游应助醒醒采纳,获得10
26秒前
zhizhi完成签到 ,获得积分10
27秒前
jmy发布了新的文献求助10
30秒前
诚心的凛完成签到,获得积分10
30秒前
TCMning发布了新的文献求助10
30秒前
耿鑫完成签到,获得积分20
32秒前
喔布响玩辣完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355997
求助须知:如何正确求助?哪些是违规求助? 4487796
关于积分的说明 13971120
捐赠科研通 4388602
什么是DOI,文献DOI怎么找? 2411155
邀请新用户注册赠送积分活动 1403696
关于科研通互助平台的介绍 1377356