Machine learning trained with quantitative susceptibility mapping to detect mild cognitive impairment in Parkinson's disease

帕金森病 认知 认知障碍 医学 物理医学与康复 内科学 听力学 神经科学 心理学 疾病
作者
Haruto Shibata,Yuto Uchida,Shohei Inui,Hirohito Kan,Keita Sakurai,Naoya Oishi,Yoshino Ueki,Kenichi Oishi,Noriyuki Matsukawa
出处
期刊:Parkinsonism & Related Disorders [Elsevier BV]
卷期号:94: 104-110 被引量:20
标识
DOI:10.1016/j.parkreldis.2021.12.004
摘要

Cognitive decline is commonly observed in Parkinson's disease (PD). Identifying PD with mild cognitive impairment (PD-MCI) is crucial for early initiation of therapeutic interventions and preventing cognitive decline.We aimed to develop a machine learning model trained with magnetic susceptibility values based on the multi-atlas label-fusion method to classify PD without dementia into PD-MCI and normal cognition (PD-CN).This multicenter observational cohort study retrospectively reviewed 61 PD-MCI and 59 PD-CN cases for the internal validation cohort and 22 PD-MCI and 21 PD-CN cases for the external validation cohort. The multi-atlas method parcellated the quantitative susceptibility mapping (QSM) images into 20 regions of interest and extracted QSM-based magnetic susceptibility values. Random forest, extreme gradient boosting, and light gradient boosting were selected as machine learning algorithms.All classifiers demonstrated substantial performances in the classification task, particularly the random forest model. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve for this model were 79.1%, 77.3%, 81.0%, and 0.78, respectively. The QSM values in the caudate nucleus, which were important features, were inversely correlated with the Montreal Cognitive Assessment scores (right caudate nucleus: r = -0.573, 95% CI: -0.801 to -0.298, p = 0.003; left caudate nucleus: r = -0.659, 95% CI: -0.894 to -0.392, p < 0.001).Machine learning models trained with QSM values successfully classified PD without dementia into PD-MCI and PD-CN groups, suggesting the potential of QSM values as an auxiliary biomarker for early evaluation of cognitive decline in patients with PD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
共享精神应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
3秒前
领导范儿应助swjs08采纳,获得10
4秒前
7秒前
安笙凉城发布了新的文献求助10
8秒前
lzh完成签到,获得积分10
8秒前
KIORking完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
Shaun发布了新的文献求助10
13秒前
千亦发布了新的文献求助20
13秒前
14秒前
14秒前
科研2121发布了新的文献求助10
15秒前
17秒前
18秒前
SYLH应助彩色的过客采纳,获得10
19秒前
写给流浪发布了新的文献求助20
19秒前
yusuf发布了新的文献求助10
21秒前
MM发布了新的文献求助10
22秒前
可爱的函函应助科研2121采纳,获得30
23秒前
24秒前
zeno123456完成签到,获得积分10
24秒前
24秒前
六沉完成签到 ,获得积分10
24秒前
27秒前
阿源发布了新的文献求助10
28秒前
Shaun完成签到,获得积分10
29秒前
29秒前
高成浩发布了新的文献求助10
30秒前
bkagyin应助单薄店员采纳,获得10
30秒前
30秒前
31秒前
传奇3应助lixiang采纳,获得10
31秒前
小马完成签到,获得积分10
32秒前
上官若男应助luct采纳,获得10
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010774
求助须知:如何正确求助?哪些是违规求助? 3550436
关于积分的说明 11305765
捐赠科研通 3284800
什么是DOI,文献DOI怎么找? 1810853
邀请新用户注册赠送积分活动 886574
科研通“疑难数据库(出版商)”最低求助积分说明 811499