Machine learning trained with quantitative susceptibility mapping to detect mild cognitive impairment in Parkinson's disease

帕金森病 认知 认知障碍 医学 物理医学与康复 内科学 听力学 神经科学 心理学 疾病
作者
Haruto Shibata,Yuto Uchida,Shohei Inui,Hirohito Kan,Keita Sakurai,Naoya Oishi,Yoshino Ueki,Kenichi Oishi,Noriyuki Matsukawa
出处
期刊:Parkinsonism & Related Disorders [Elsevier BV]
卷期号:94: 104-110 被引量:20
标识
DOI:10.1016/j.parkreldis.2021.12.004
摘要

Cognitive decline is commonly observed in Parkinson's disease (PD). Identifying PD with mild cognitive impairment (PD-MCI) is crucial for early initiation of therapeutic interventions and preventing cognitive decline.We aimed to develop a machine learning model trained with magnetic susceptibility values based on the multi-atlas label-fusion method to classify PD without dementia into PD-MCI and normal cognition (PD-CN).This multicenter observational cohort study retrospectively reviewed 61 PD-MCI and 59 PD-CN cases for the internal validation cohort and 22 PD-MCI and 21 PD-CN cases for the external validation cohort. The multi-atlas method parcellated the quantitative susceptibility mapping (QSM) images into 20 regions of interest and extracted QSM-based magnetic susceptibility values. Random forest, extreme gradient boosting, and light gradient boosting were selected as machine learning algorithms.All classifiers demonstrated substantial performances in the classification task, particularly the random forest model. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve for this model were 79.1%, 77.3%, 81.0%, and 0.78, respectively. The QSM values in the caudate nucleus, which were important features, were inversely correlated with the Montreal Cognitive Assessment scores (right caudate nucleus: r = -0.573, 95% CI: -0.801 to -0.298, p = 0.003; left caudate nucleus: r = -0.659, 95% CI: -0.894 to -0.392, p < 0.001).Machine learning models trained with QSM values successfully classified PD without dementia into PD-MCI and PD-CN groups, suggesting the potential of QSM values as an auxiliary biomarker for early evaluation of cognitive decline in patients with PD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jwj发布了新的文献求助10
1秒前
1秒前
白熊完成签到 ,获得积分10
1秒前
2秒前
李健应助北齐冲浪的鱼采纳,获得10
3秒前
3秒前
王一鸣发布了新的文献求助10
4秒前
ikutovaya完成签到,获得积分10
4秒前
4秒前
奋斗的妙松完成签到,获得积分10
5秒前
老实莫言完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助150
6秒前
wop111应助morph采纳,获得20
6秒前
追寻的冬寒完成签到 ,获得积分10
7秒前
8秒前
吼吼吼吼发布了新的文献求助10
8秒前
善学以致用应助生动念烟采纳,获得10
8秒前
由天与发布了新的文献求助10
9秒前
wsy发布了新的文献求助10
10秒前
12秒前
14秒前
14秒前
15秒前
lllllll完成签到,获得积分10
16秒前
16秒前
王一鸣完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
心灵尔安完成签到 ,获得积分10
20秒前
你终硕发布了新的文献求助10
20秒前
科研通AI6应助满意的又蓝采纳,获得10
20秒前
jwj完成签到,获得积分10
21秒前
22秒前
大个应助gc529采纳,获得10
23秒前
24秒前
28秒前
所所应助你在烦恼什么采纳,获得10
29秒前
852应助你终硕采纳,获得10
29秒前
核桃发布了新的文献求助10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950711
求助须知:如何正确求助?哪些是违规求助? 4213460
关于积分的说明 13104286
捐赠科研通 3995337
什么是DOI,文献DOI怎么找? 2186837
邀请新用户注册赠送积分活动 1202090
关于科研通互助平台的介绍 1115359