鼠李糖脂
生物降解
菲
生物吸附
化学
假单胞菌
生物利用度
Zeta电位
环境化学
有机化学
吸附
细菌
化学工程
生物
吸附
铜绿假单胞菌
工程类
纳米颗粒
生物信息学
遗传学
作者
Zhao Ma,Juan Liu,Richard P. Dick,Hui Li,Shen Di,Yanzheng Gao,Michael Gatheru Waigi,Wanting Ling
标识
DOI:10.1016/j.envpol.2018.04.125
摘要
Given the sub-lethal risks of synthetic surfactants, rhamnolipid is a promising class of biosurfactants with the potential to promote the bioavailability of polycyclic aromatic hydrocarbons (PAHs), to provide a favorable substitute for synthetic surfactants. However, few previous studies have integrated the behavior and mechanism behind rhamnolipid-influenced PAH biosorption and biodegradation. This is, to our knowledge, the first report of a bacterial envelope regulated link between phenanthrene (PHE) biosorption and biodegradation by rhamnolipid-induced PHE-degrading strain Pseudomonas sp. Ph6. Rhamnolipid (0─400 mg L−1) can change the cell-surface zeta potential, cell surface hydrophobicity (CSH), cell ultra-microstructure and functional groups, and then alter PHE biosorption and biodegradation of Ph6. Greater amounts of PHE sorbed on cell envelopes results in more PHE diffusing into cytochylema, thus favoring PHE intracellular biodegradation of Ph6. Rhamnolipid (≤100 mg L−1) could change the microstructures and functional groups of cell envelopes of Ph6, enhance the cell-surface zeta potential and CSH, thus consequently favor PHE biosorption and biodegradation by strain Ph6. By contrast, rhamnolipid at higher concentrations (≥200 mg L−1) hindered PHE biosorption and biodegradation. Rhamnolipid, as a biosurfactant, can be successfully utilized as an additive to improve the microbial biodegradation of PAHs in the environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI