清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An MRI-based Radiomics Classifier for Preoperative Prediction of Ki-67 Status in Breast Cancer

无线电技术 乳腺癌 医学 分类器(UML) 放射科 内科学 人工智能 癌症 计算机科学
作者
Cuishan Liang,Zixuan Cheng,Yanqi Huang,Lan He,Xin Chen,Zelan Ma,Xiaomei Huang,Changhong Liang,Zaiyi Liu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:25 (9): 1111-1117 被引量:87
标识
DOI:10.1016/j.acra.2018.01.006
摘要

Rationale and Objectives This study aims to investigate the value of a magnetic resonance imaging–based radiomics classifier for preoperatively predicting the Ki-67 status in patients with breast cancer. Materials and Methods We chronologically divided 318 patients with clinicopathologically confirmed breast cancer into a training dataset (n = 200) and a validation dataset (n = 118). Radiomics features were extracted from T2-weighted (T2W) and contrast-enhanced T1-weighted (T1+C) images of breast cancer. Radiomics feature selection and radiomics classifiers were generated using the least absolute shrinkage and selection operator regression analysis method. The correlation between the radiomics classifiers and the Ki-67 status in patients with breast cancer was explored. The predictive performances of the radiomics classifiers for the Ki-67 status were evaluated with receiver operating characteristic curves in the training dataset and validated in the validation dataset. Results Through the radiomics feature selection, 16 and 14 features based on T2W and T1+C images, respectively, were selected to constitute the radiomics classifiers. The radiomics classifier based on T2W images was significantly correlated with the Ki-67 status in both the training and the validation datasets (both P < .0001). The radiomics classifier based on T1+C images was significantly correlated with the Ki-67 status in the training dataset (P < .0001) but not in the validation dataset (P = .083). The T2W image–based radiomics classifier exhibited good discrimination for Ki-67 status, with areas under the receiver operating characteristic curves of 0.762 (95% confidence interval: 0.685, 0.838) and 0.740 (95% confidence interval: 0.645, 0.836) in the training and validation datasets, respectively. Conclusions The T2W image–based radiomics classifier was a significant predictor of Ki-67 status in patients with breast cancer. Thus, it may serve as a noninvasive approach to facilitate the preoperative prediction of Ki-67 status in clinical practice. This study aims to investigate the value of a magnetic resonance imaging–based radiomics classifier for preoperatively predicting the Ki-67 status in patients with breast cancer. We chronologically divided 318 patients with clinicopathologically confirmed breast cancer into a training dataset (n = 200) and a validation dataset (n = 118). Radiomics features were extracted from T2-weighted (T2W) and contrast-enhanced T1-weighted (T1+C) images of breast cancer. Radiomics feature selection and radiomics classifiers were generated using the least absolute shrinkage and selection operator regression analysis method. The correlation between the radiomics classifiers and the Ki-67 status in patients with breast cancer was explored. The predictive performances of the radiomics classifiers for the Ki-67 status were evaluated with receiver operating characteristic curves in the training dataset and validated in the validation dataset. Through the radiomics feature selection, 16 and 14 features based on T2W and T1+C images, respectively, were selected to constitute the radiomics classifiers. The radiomics classifier based on T2W images was significantly correlated with the Ki-67 status in both the training and the validation datasets (both P < .0001). The radiomics classifier based on T1+C images was significantly correlated with the Ki-67 status in the training dataset (P < .0001) but not in the validation dataset (P = .083). The T2W image–based radiomics classifier exhibited good discrimination for Ki-67 status, with areas under the receiver operating characteristic curves of 0.762 (95% confidence interval: 0.685, 0.838) and 0.740 (95% confidence interval: 0.645, 0.836) in the training and validation datasets, respectively. The T2W image–based radiomics classifier was a significant predictor of Ki-67 status in patients with breast cancer. Thus, it may serve as a noninvasive approach to facilitate the preoperative prediction of Ki-67 status in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
和气生财君完成签到 ,获得积分10
3秒前
bzmuzxy发布了新的文献求助10
8秒前
bzmuzxy完成签到,获得积分10
20秒前
chen完成签到 ,获得积分10
23秒前
幽默滑板完成签到 ,获得积分10
23秒前
范白容完成签到 ,获得积分0
25秒前
雪花完成签到 ,获得积分10
31秒前
惜曦完成签到 ,获得积分10
37秒前
sally_5202完成签到 ,获得积分10
42秒前
孙朱珠完成签到,获得积分10
52秒前
53秒前
秋夜临完成签到,获得积分0
54秒前
财路通八方完成签到 ,获得积分10
55秒前
科研华发布了新的文献求助10
59秒前
鹌鹑131完成签到,获得积分20
1分钟前
whuhustwit完成签到,获得积分10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
夜倾心完成签到,获得积分10
1分钟前
夕楠枫发布了新的文献求助10
1分钟前
科研通AI5应助鹌鹑131采纳,获得10
1分钟前
朱婷完成签到 ,获得积分10
1分钟前
清脆的靖仇完成签到,获得积分10
1分钟前
哈哈完成签到 ,获得积分10
2分钟前
启程完成签到 ,获得积分10
2分钟前
apt完成签到 ,获得积分10
2分钟前
as完成签到 ,获得积分10
2分钟前
Vegeta完成签到 ,获得积分10
2分钟前
年轻千愁完成签到 ,获得积分10
2分钟前
2分钟前
淞淞于我完成签到 ,获得积分10
3分钟前
凝凝发布了新的文献求助10
3分钟前
满意的跳跳糖完成签到 ,获得积分10
3分钟前
迅速的幻雪完成签到 ,获得积分10
3分钟前
沉静香氛完成签到 ,获得积分10
3分钟前
凝凝完成签到,获得积分20
3分钟前
科研通AI5应助秋迎夏采纳,获得30
3分钟前
包容的若风完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5008541
求助须知:如何正确求助?哪些是违规求助? 4251001
关于积分的说明 13243927
捐赠科研通 4051767
什么是DOI,文献DOI怎么找? 2216625
邀请新用户注册赠送积分活动 1226360
关于科研通互助平台的介绍 1148018