An MRI-based Radiomics Classifier for Preoperative Prediction of Ki-67 Status in Breast Cancer

无线电技术 乳腺癌 医学 分类器(UML) 放射科 内科学 人工智能 癌症 计算机科学
作者
Cuishan Liang,Zixuan Cheng,Yanqi Huang,Lan He,Xin Chen,Zelan Ma,Xiaomei Huang,Changhong Liang,Zaiyi Liu
出处
期刊:Academic Radiology [Elsevier]
卷期号:25 (9): 1111-1117 被引量:86
标识
DOI:10.1016/j.acra.2018.01.006
摘要

Rationale and Objectives This study aims to investigate the value of a magnetic resonance imaging–based radiomics classifier for preoperatively predicting the Ki-67 status in patients with breast cancer. Materials and Methods We chronologically divided 318 patients with clinicopathologically confirmed breast cancer into a training dataset (n = 200) and a validation dataset (n = 118). Radiomics features were extracted from T2-weighted (T2W) and contrast-enhanced T1-weighted (T1+C) images of breast cancer. Radiomics feature selection and radiomics classifiers were generated using the least absolute shrinkage and selection operator regression analysis method. The correlation between the radiomics classifiers and the Ki-67 status in patients with breast cancer was explored. The predictive performances of the radiomics classifiers for the Ki-67 status were evaluated with receiver operating characteristic curves in the training dataset and validated in the validation dataset. Results Through the radiomics feature selection, 16 and 14 features based on T2W and T1+C images, respectively, were selected to constitute the radiomics classifiers. The radiomics classifier based on T2W images was significantly correlated with the Ki-67 status in both the training and the validation datasets (both P < .0001). The radiomics classifier based on T1+C images was significantly correlated with the Ki-67 status in the training dataset (P < .0001) but not in the validation dataset (P = .083). The T2W image–based radiomics classifier exhibited good discrimination for Ki-67 status, with areas under the receiver operating characteristic curves of 0.762 (95% confidence interval: 0.685, 0.838) and 0.740 (95% confidence interval: 0.645, 0.836) in the training and validation datasets, respectively. Conclusions The T2W image–based radiomics classifier was a significant predictor of Ki-67 status in patients with breast cancer. Thus, it may serve as a noninvasive approach to facilitate the preoperative prediction of Ki-67 status in clinical practice. This study aims to investigate the value of a magnetic resonance imaging–based radiomics classifier for preoperatively predicting the Ki-67 status in patients with breast cancer. We chronologically divided 318 patients with clinicopathologically confirmed breast cancer into a training dataset (n = 200) and a validation dataset (n = 118). Radiomics features were extracted from T2-weighted (T2W) and contrast-enhanced T1-weighted (T1+C) images of breast cancer. Radiomics feature selection and radiomics classifiers were generated using the least absolute shrinkage and selection operator regression analysis method. The correlation between the radiomics classifiers and the Ki-67 status in patients with breast cancer was explored. The predictive performances of the radiomics classifiers for the Ki-67 status were evaluated with receiver operating characteristic curves in the training dataset and validated in the validation dataset. Through the radiomics feature selection, 16 and 14 features based on T2W and T1+C images, respectively, were selected to constitute the radiomics classifiers. The radiomics classifier based on T2W images was significantly correlated with the Ki-67 status in both the training and the validation datasets (both P < .0001). The radiomics classifier based on T1+C images was significantly correlated with the Ki-67 status in the training dataset (P < .0001) but not in the validation dataset (P = .083). The T2W image–based radiomics classifier exhibited good discrimination for Ki-67 status, with areas under the receiver operating characteristic curves of 0.762 (95% confidence interval: 0.685, 0.838) and 0.740 (95% confidence interval: 0.645, 0.836) in the training and validation datasets, respectively. The T2W image–based radiomics classifier was a significant predictor of Ki-67 status in patients with breast cancer. Thus, it may serve as a noninvasive approach to facilitate the preoperative prediction of Ki-67 status in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助涛涛采纳,获得10
刚刚
英姑应助义气的傲松采纳,获得10
1秒前
1秒前
哭泣蛋挞完成签到 ,获得积分10
2秒前
sweetbearm应助通~采纳,获得10
2秒前
田様应助吃饭用大碗采纳,获得10
3秒前
3秒前
4秒前
5秒前
阿斯蒂和琴酒完成签到 ,获得积分10
5秒前
珂珂发布了新的文献求助10
7秒前
7秒前
迟大猫应助我是站长才怪采纳,获得30
7秒前
8秒前
BaekHyun发布了新的文献求助10
8秒前
背后翠梅发布了新的文献求助30
8秒前
CCR发布了新的文献求助10
8秒前
su发布了新的文献求助10
10秒前
善学以致用应助钰c采纳,获得10
10秒前
Fundamental完成签到,获得积分20
11秒前
通~发布了新的文献求助10
11秒前
Akim应助阿屁屁猪采纳,获得10
11秒前
12秒前
细雨听风发布了新的文献求助10
12秒前
12秒前
英俊的小松鼠完成签到,获得积分10
12秒前
13秒前
15秒前
cc完成签到,获得积分20
15秒前
16秒前
16秒前
背后翠梅完成签到,获得积分10
16秒前
16秒前
涛涛发布了新的文献求助10
16秒前
lan完成签到,获得积分10
16秒前
皮皮完成签到 ,获得积分10
17秒前
ChiDaiOLD完成签到,获得积分10
17秒前
17秒前
情怀应助顺顺采纳,获得10
17秒前
Fundamental发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808