亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An MRI-based Radiomics Classifier for Preoperative Prediction of Ki-67 Status in Breast Cancer

无线电技术 乳腺癌 医学 分类器(UML) 放射科 内科学 人工智能 癌症 计算机科学
作者
Cuishan Liang,Zixuan Cheng,Yanqi Huang,Lan He,Xin Chen,Zelan Ma,Xiaomei Huang,Changhong Liang,Zaiyi Liu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:25 (9): 1111-1117 被引量:87
标识
DOI:10.1016/j.acra.2018.01.006
摘要

Rationale and Objectives This study aims to investigate the value of a magnetic resonance imaging–based radiomics classifier for preoperatively predicting the Ki-67 status in patients with breast cancer. Materials and Methods We chronologically divided 318 patients with clinicopathologically confirmed breast cancer into a training dataset (n = 200) and a validation dataset (n = 118). Radiomics features were extracted from T2-weighted (T2W) and contrast-enhanced T1-weighted (T1+C) images of breast cancer. Radiomics feature selection and radiomics classifiers were generated using the least absolute shrinkage and selection operator regression analysis method. The correlation between the radiomics classifiers and the Ki-67 status in patients with breast cancer was explored. The predictive performances of the radiomics classifiers for the Ki-67 status were evaluated with receiver operating characteristic curves in the training dataset and validated in the validation dataset. Results Through the radiomics feature selection, 16 and 14 features based on T2W and T1+C images, respectively, were selected to constitute the radiomics classifiers. The radiomics classifier based on T2W images was significantly correlated with the Ki-67 status in both the training and the validation datasets (both P < .0001). The radiomics classifier based on T1+C images was significantly correlated with the Ki-67 status in the training dataset (P < .0001) but not in the validation dataset (P = .083). The T2W image–based radiomics classifier exhibited good discrimination for Ki-67 status, with areas under the receiver operating characteristic curves of 0.762 (95% confidence interval: 0.685, 0.838) and 0.740 (95% confidence interval: 0.645, 0.836) in the training and validation datasets, respectively. Conclusions The T2W image–based radiomics classifier was a significant predictor of Ki-67 status in patients with breast cancer. Thus, it may serve as a noninvasive approach to facilitate the preoperative prediction of Ki-67 status in clinical practice. This study aims to investigate the value of a magnetic resonance imaging–based radiomics classifier for preoperatively predicting the Ki-67 status in patients with breast cancer. We chronologically divided 318 patients with clinicopathologically confirmed breast cancer into a training dataset (n = 200) and a validation dataset (n = 118). Radiomics features were extracted from T2-weighted (T2W) and contrast-enhanced T1-weighted (T1+C) images of breast cancer. Radiomics feature selection and radiomics classifiers were generated using the least absolute shrinkage and selection operator regression analysis method. The correlation between the radiomics classifiers and the Ki-67 status in patients with breast cancer was explored. The predictive performances of the radiomics classifiers for the Ki-67 status were evaluated with receiver operating characteristic curves in the training dataset and validated in the validation dataset. Through the radiomics feature selection, 16 and 14 features based on T2W and T1+C images, respectively, were selected to constitute the radiomics classifiers. The radiomics classifier based on T2W images was significantly correlated with the Ki-67 status in both the training and the validation datasets (both P < .0001). The radiomics classifier based on T1+C images was significantly correlated with the Ki-67 status in the training dataset (P < .0001) but not in the validation dataset (P = .083). The T2W image–based radiomics classifier exhibited good discrimination for Ki-67 status, with areas under the receiver operating characteristic curves of 0.762 (95% confidence interval: 0.685, 0.838) and 0.740 (95% confidence interval: 0.645, 0.836) in the training and validation datasets, respectively. The T2W image–based radiomics classifier was a significant predictor of Ki-67 status in patients with breast cancer. Thus, it may serve as a noninvasive approach to facilitate the preoperative prediction of Ki-67 status in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rengar完成签到,获得积分10
2秒前
小华完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
7秒前
小烦完成签到 ,获得积分10
11秒前
numagok完成签到,获得积分10
14秒前
满怀信心完成签到 ,获得积分10
15秒前
Lucas应助撸撸大仙采纳,获得10
17秒前
晓晓完成签到,获得积分20
22秒前
微笑的桐完成签到 ,获得积分20
26秒前
CYY完成签到 ,获得积分10
31秒前
31秒前
Yuki完成签到 ,获得积分10
35秒前
秋日思语发布了新的文献求助30
36秒前
vagary发布了新的文献求助10
39秒前
42秒前
Orange应助Runjin_Hu采纳,获得10
42秒前
45秒前
vagary完成签到,获得积分10
50秒前
唐ZY123发布了新的文献求助10
52秒前
科研通AI5应助JL采纳,获得10
56秒前
大气的枫发布了新的文献求助10
59秒前
和谐青文完成签到 ,获得积分10
1分钟前
1分钟前
巫马百招完成签到,获得积分10
1分钟前
SciGPT应助大气的枫采纳,获得10
1分钟前
鸣笛应助大气的枫采纳,获得10
1分钟前
Wang完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
KIKI完成签到 ,获得积分10
1分钟前
DoctorLee发布了新的文献求助10
1分钟前
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
李金文应助科研通管家采纳,获得10
1分钟前
李金文应助科研通管家采纳,获得10
1分钟前
JL发布了新的文献求助10
1分钟前
灵儿完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610559
求助须知:如何正确求助?哪些是违规求助? 4016467
关于积分的说明 12435266
捐赠科研通 3698082
什么是DOI,文献DOI怎么找? 2039210
邀请新用户注册赠送积分活动 1072079
科研通“疑难数据库(出版商)”最低求助积分说明 955767