An MRI-based Radiomics Classifier for Preoperative Prediction of Ki-67 Status in Breast Cancer

无线电技术 乳腺癌 医学 分类器(UML) 放射科 内科学 人工智能 癌症 计算机科学
作者
Cuishan Liang,Zixuan Cheng,Yanqi Huang,Lan He,Xin Chen,Zelan Ma,Xiaomei Huang,Changhong Liang,Zaiyi Liu
出处
期刊:Academic Radiology [Elsevier]
卷期号:25 (9): 1111-1117 被引量:86
标识
DOI:10.1016/j.acra.2018.01.006
摘要

Rationale and Objectives This study aims to investigate the value of a magnetic resonance imaging–based radiomics classifier for preoperatively predicting the Ki-67 status in patients with breast cancer. Materials and Methods We chronologically divided 318 patients with clinicopathologically confirmed breast cancer into a training dataset (n = 200) and a validation dataset (n = 118). Radiomics features were extracted from T2-weighted (T2W) and contrast-enhanced T1-weighted (T1+C) images of breast cancer. Radiomics feature selection and radiomics classifiers were generated using the least absolute shrinkage and selection operator regression analysis method. The correlation between the radiomics classifiers and the Ki-67 status in patients with breast cancer was explored. The predictive performances of the radiomics classifiers for the Ki-67 status were evaluated with receiver operating characteristic curves in the training dataset and validated in the validation dataset. Results Through the radiomics feature selection, 16 and 14 features based on T2W and T1+C images, respectively, were selected to constitute the radiomics classifiers. The radiomics classifier based on T2W images was significantly correlated with the Ki-67 status in both the training and the validation datasets (both P < .0001). The radiomics classifier based on T1+C images was significantly correlated with the Ki-67 status in the training dataset (P < .0001) but not in the validation dataset (P = .083). The T2W image–based radiomics classifier exhibited good discrimination for Ki-67 status, with areas under the receiver operating characteristic curves of 0.762 (95% confidence interval: 0.685, 0.838) and 0.740 (95% confidence interval: 0.645, 0.836) in the training and validation datasets, respectively. Conclusions The T2W image–based radiomics classifier was a significant predictor of Ki-67 status in patients with breast cancer. Thus, it may serve as a noninvasive approach to facilitate the preoperative prediction of Ki-67 status in clinical practice. This study aims to investigate the value of a magnetic resonance imaging–based radiomics classifier for preoperatively predicting the Ki-67 status in patients with breast cancer. We chronologically divided 318 patients with clinicopathologically confirmed breast cancer into a training dataset (n = 200) and a validation dataset (n = 118). Radiomics features were extracted from T2-weighted (T2W) and contrast-enhanced T1-weighted (T1+C) images of breast cancer. Radiomics feature selection and radiomics classifiers were generated using the least absolute shrinkage and selection operator regression analysis method. The correlation between the radiomics classifiers and the Ki-67 status in patients with breast cancer was explored. The predictive performances of the radiomics classifiers for the Ki-67 status were evaluated with receiver operating characteristic curves in the training dataset and validated in the validation dataset. Through the radiomics feature selection, 16 and 14 features based on T2W and T1+C images, respectively, were selected to constitute the radiomics classifiers. The radiomics classifier based on T2W images was significantly correlated with the Ki-67 status in both the training and the validation datasets (both P < .0001). The radiomics classifier based on T1+C images was significantly correlated with the Ki-67 status in the training dataset (P < .0001) but not in the validation dataset (P = .083). The T2W image–based radiomics classifier exhibited good discrimination for Ki-67 status, with areas under the receiver operating characteristic curves of 0.762 (95% confidence interval: 0.685, 0.838) and 0.740 (95% confidence interval: 0.645, 0.836) in the training and validation datasets, respectively. The T2W image–based radiomics classifier was a significant predictor of Ki-67 status in patients with breast cancer. Thus, it may serve as a noninvasive approach to facilitate the preoperative prediction of Ki-67 status in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
排骨炖豆角完成签到 ,获得积分10
1秒前
小宋同学不能怂完成签到 ,获得积分10
7秒前
任小萱完成签到,获得积分10
13秒前
15秒前
认真的裙子完成签到,获得积分10
16秒前
王力完成签到 ,获得积分10
16秒前
NexusExplorer应助努努酱采纳,获得10
21秒前
大灰狼发布了新的文献求助10
21秒前
博士加油完成签到,获得积分10
21秒前
孤独如曼完成签到 ,获得积分10
22秒前
Akim应助寒冷的安荷采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
Polymer72应助xckk采纳,获得10
25秒前
奔波霸完成签到 ,获得积分10
30秒前
健壮的凝冬完成签到 ,获得积分10
30秒前
我一进来就看到常威在打来福完成签到,获得积分10
34秒前
波西米亚完成签到,获得积分10
34秒前
舒服的灰狼完成签到 ,获得积分10
41秒前
四辈儿完成签到,获得积分10
46秒前
psy学子完成签到 ,获得积分10
47秒前
小哈完成签到 ,获得积分10
48秒前
惜寒完成签到 ,获得积分10
50秒前
alixy完成签到,获得积分10
50秒前
mawenting完成签到 ,获得积分10
51秒前
蔚欢完成签到 ,获得积分10
56秒前
南城完成签到 ,获得积分10
58秒前
SONGYEZI完成签到,获得积分10
1分钟前
小杨完成签到 ,获得积分10
1分钟前
开心的大娘完成签到,获得积分10
1分钟前
健忘的沛蓝完成签到 ,获得积分10
1分钟前
PM2555完成签到 ,获得积分10
1分钟前
咯咯咯完成签到 ,获得积分10
1分钟前
1分钟前
Olive完成签到,获得积分10
1分钟前
田田完成签到,获得积分10
1分钟前
霍霍完成签到 ,获得积分10
1分钟前
baoxiaozhai完成签到 ,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3360144
求助须知:如何正确求助?哪些是违规求助? 2982713
关于积分的说明 8704729
捐赠科研通 2664487
什么是DOI,文献DOI怎么找? 1459098
科研通“疑难数据库(出版商)”最低求助积分说明 675400
邀请新用户注册赠送积分活动 666447