离解(化学)
过电位
化学
催化作用
密度泛函理论
光化学
反应机理
活化能
过氧化氢
氢
物理化学
计算化学
电化学
电极
有机化学
作者
Yang Yang,Changqing Dai,Adrian C. Fisher,Yanchun Shen,Daojian Cheng
标识
DOI:10.1088/1361-648x/aa7db6
摘要
Oxygen reduction and hydrogen peroxide reduction are technologically important reactions in energy-conversion devices. In this work, a full understanding of oxygen reduction reaction (ORR) mechanism on Au(1 1 1) surface is investigated by density functional theory (DFT) calculations, including the reaction mechanisms of O2 dissociation, OOH dissociation, and H2O2 dissociation. Among these ORR mechanisms on Au(1 1 1), the activation energy of [Formula: see text] hydrogenation reaction is much lower than that of [Formula: see text] dissociation, indicating that [Formula: see text] hydrogenation reaction is more appropriate at the first step than [Formula: see text] dissociation. In the following, H2O2 can be formed with the lower activation energy compared with the OOH dissociation reaction, and finally H2O2 could be generated as a detectable product due to the high activation energy of H2O2 dissociation reaction. Furthermore, the potential dependent free energy study suggests that the H2O2 formation is thermodynamically favorable up to 0.4 V on Au(1 1 1), reducing the overpotential for 2e - ORR process. And the elementary step of first H2O formation becomes non-spontaneous at 0.4 V, indicating the difficulty of 4e - reduction pathway. Our DFT calculations show that H2O2 can be generated on Au(1 1 1) and the first electron transfer is the rate determining step. Our results show that gold surface could be used as a good catalyst for small-scale manufacture and on-site production of H2O2.
科研通智能强力驱动
Strongly Powered by AbleSci AI