A full understanding of oxygen reduction reaction mechanism on Au(1 1 1) surface

离解(化学) 过电位 化学 催化作用 密度泛函理论 光化学 反应机理 活化能 过氧化氢 物理化学 计算化学 电化学 电极 有机化学
作者
Yang Yang,Changqing Dai,Adrian C. Fisher,Yanchun Shen,Daojian Cheng
出处
期刊:Journal of Physics: Condensed Matter [IOP Publishing]
卷期号:29 (36): 365201-365201 被引量:9
标识
DOI:10.1088/1361-648x/aa7db6
摘要

Oxygen reduction and hydrogen peroxide reduction are technologically important reactions in energy-conversion devices. In this work, a full understanding of oxygen reduction reaction (ORR) mechanism on Au(1 1 1) surface is investigated by density functional theory (DFT) calculations, including the reaction mechanisms of O2 dissociation, OOH dissociation, and H2O2 dissociation. Among these ORR mechanisms on Au(1 1 1), the activation energy of [Formula: see text] hydrogenation reaction is much lower than that of [Formula: see text] dissociation, indicating that [Formula: see text] hydrogenation reaction is more appropriate at the first step than [Formula: see text] dissociation. In the following, H2O2 can be formed with the lower activation energy compared with the OOH dissociation reaction, and finally H2O2 could be generated as a detectable product due to the high activation energy of H2O2 dissociation reaction. Furthermore, the potential dependent free energy study suggests that the H2O2 formation is thermodynamically favorable up to 0.4 V on Au(1 1 1), reducing the overpotential for 2e - ORR process. And the elementary step of first H2O formation becomes non-spontaneous at 0.4 V, indicating the difficulty of 4e - reduction pathway. Our DFT calculations show that H2O2 can be generated on Au(1 1 1) and the first electron transfer is the rate determining step. Our results show that gold surface could be used as a good catalyst for small-scale manufacture and on-site production of H2O2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
偷狗的小月亮完成签到,获得积分10
刚刚
爱吃泡芙完成签到,获得积分10
刚刚
ysl完成签到,获得积分10
1秒前
1秒前
爆米花应助pipge采纳,获得30
1秒前
彻底完成签到,获得积分10
2秒前
3秒前
韋晴完成签到,获得积分10
4秒前
4秒前
6秒前
领导范儿应助wenjian采纳,获得10
6秒前
6秒前
奇拉维特完成签到 ,获得积分10
6秒前
7秒前
Apple发布了新的文献求助10
7秒前
wtg完成签到,获得积分10
7秒前
在水一方应助Sheila采纳,获得10
8秒前
英姑应助YE采纳,获得30
8秒前
ysl发布了新的文献求助30
8秒前
8秒前
cilan完成签到 ,获得积分10
11秒前
义气的妙松完成签到,获得积分10
11秒前
yangjing发布了新的文献求助10
12秒前
rosexu发布了新的文献求助10
12秒前
盘尼西林发布了新的文献求助10
13秒前
科研通AI2S应助我是125采纳,获得10
13秒前
李健的小迷弟应助arkamar采纳,获得10
14秒前
Xiaoxiao完成签到,获得积分10
14秒前
cilan发布了新的文献求助10
14秒前
SciGPT应助William鉴哲采纳,获得10
14秒前
15秒前
咩咩完成签到,获得积分20
16秒前
合一海盗应助wtg采纳,获得200
16秒前
16秒前
Grayball应助ccc采纳,获得10
16秒前
bkagyin应助猪猪hero采纳,获得10
17秒前
17秒前
科研通AI5应助顺利毕业采纳,获得10
18秒前
领导范儿应助spray采纳,获得30
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808