Insomnia as a predictor of depression: A meta-analytic evaluation of longitudinal epidemiological studies

荟萃分析 萧条(经济学) 优势比 失眠症 精神科 流行病学 置信区间 医学 临床心理学 人口 心理学 内科学 环境卫生 宏观经济学 经济
作者
Chiara Baglioni,Gemma Battagliese,Bernd Feige,Kai Spiegelhalder,Christoph Nissen,Ulrich Voderholzer,Caterina Lombardo,Dieter Riemann
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:135 (1-3): 10-19 被引量:2389
标识
DOI:10.1016/j.jad.2011.01.011
摘要

In many patients with depression, symptoms of insomnia herald the onset of the disorder and may persist into remission or recovery, even after adequate treatment. Several studies have raised the question whether insomniac symptoms may constitute an independent clinical predictor of depression. This meta-analysis is aimed at evaluating quantitatively if insomnia constitutes a predictor of depression. PubMed, Medline, PsycInfo, and PsycArticles databases were searched from 1980 until 2010 to identify longitudinal epidemiological studies simultaneously investigating insomniac complaints and depressed psychopathology. Effects were summarized using the logarithms of the odds ratios for insomnia at baseline to predict depression at follow-up. Studies were pooled with both fixed- and random-effects meta-analytic models in order to evaluate the concordance. Heterogeneity test and sensitivity analysis were computed. Twenty-one studies met inclusion criteria. Considering all studies together, heterogeneity was found. The random-effects model showed an overall odds ratio for insomnia to predict depression of 2.60 (confidence interval [CI]: 1.98–3.42). When the analysis was adjusted for outliers, the studies were not longer heterogeneous. The fixed-effects model showed an overall odds ratio of 2.10 (CI: 1.86–2.38). The main limit is that included studies did not always consider the role of other intervening variables. Non-depressed people with insomnia have a twofold risk to develop depression, compared to people with no sleep difficulties. Thus, early treatment programs for insomnia might reduce the risk for developing depression in the general population and be considered a helpful general preventive strategy in the area of mental health care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助小仙女采纳,获得10
刚刚
LLL完成签到 ,获得积分10
1秒前
3秒前
研友_P85D6Z发布了新的文献求助10
3秒前
CipherSage应助enjoy采纳,获得10
3秒前
3秒前
aaaa发布了新的文献求助10
3秒前
很难过完成签到,获得积分10
4秒前
流沙完成签到,获得积分10
4秒前
4秒前
风趣的老太完成签到,获得积分10
5秒前
5秒前
FashionBoy应助害羞的衫采纳,获得10
5秒前
panfan完成签到,获得积分10
6秒前
充电宝应助薛定谔的猫采纳,获得10
6秒前
6秒前
wst完成签到,获得积分10
6秒前
随随风发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
雨下听风完成签到 ,获得积分10
8秒前
123发布了新的文献求助10
8秒前
9秒前
美好凡阳完成签到,获得积分10
9秒前
王王应助zl987采纳,获得10
10秒前
王王应助zl987采纳,获得10
10秒前
王王应助zl987采纳,获得10
10秒前
10秒前
10秒前
王霖发布了新的文献求助10
10秒前
young完成签到,获得积分10
11秒前
大模型应助柚被啊呜一口采纳,获得10
12秒前
美好凡阳发布了新的文献求助10
12秒前
6666应助蝉鸣一夏采纳,获得10
13秒前
zjl发布了新的文献求助10
13秒前
多看点发布了新的文献求助10
13秒前
14秒前
15秒前
刘奕发布了新的文献求助10
15秒前
hhhhhjn发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735617
求助须知:如何正确求助?哪些是违规求助? 5361598
关于积分的说明 15330603
捐赠科研通 4879809
什么是DOI,文献DOI怎么找? 2622330
邀请新用户注册赠送积分活动 1571336
关于科研通互助平台的介绍 1528174