Identifying a Subpopulation for a Tailored Therapy: Bridging Clinical Efficacy From a Laboratory-Developed Assay to a Validated In Vitro Diagnostic Test Kit

医学 医学物理学 背景(考古学) 临床试验 缺少数据 桥接(联网) 病理 计算机科学 机器学习 计算机网络 生物 古生物学
作者
Jonathan Denne,Gene Pennello,Luping Zhao,Shao-Chun Chang,Sandra K. Althouse
出处
期刊:Statistics in Biopharmaceutical Research [Informa]
卷期号:6 (1): 78-88 被引量:17
标识
DOI:10.1080/19466315.2013.852618
摘要

AbstractIn the United States, regulatory approval of a therapy that is tailored to a subpopulation may require the coapproval of a companion in vitro diagnostic (IVD) tool for identifying that subpopulation. Unfortunately, for many reasons, development of the companion IVD may lag such that it is unavailable during a pivotal clinical trial of the therapy. Instead, a laboratory-developed test (LDT) may be used on clinical trial specimens to identify the subpopulation on whom to evaluate the therapy. However, remaining specimen material is saved so that when the companion IVD is ready for market, the specimens can be retested, in an effort to "bridge" from the LDT to the IVD. Unfortunately, retest results can be missing or invalid because some subjects lack remaining specimen material or because what remains is unevaluable (e.g., due to insufficient specimen material, inadequate specimen quality). We frame the bridging analysis problem as one of estimating drug efficacy in the IVD-defined subpopulation. We develop a closed-form approach, as well as approaches based on multiple imputation and bootstrapping to address the missing data problem. We discuss this in the context of a case study involving a recent submission and approval in the United States of a drug and IVD in oncology.Key Words: AgreementCompanion diagnosticConcordanceOncologyPharmacogenomicsPredictive biomarker AcknowledgmentsThe authors thank Donna Roscoe and Jingjing Ye for their reviews and helpful comments, which improved this article.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Ship发布了新的文献求助30
1秒前
wu发布了新的文献求助10
2秒前
桐桐应助噜噜噜采纳,获得10
2秒前
3秒前
卡莉给卡莉的求助进行了留言
3秒前
JamesPei应助kkuang采纳,获得10
4秒前
Sunshine发布了新的文献求助10
4秒前
5秒前
情怀应助yakami采纳,获得10
6秒前
香菜发布了新的文献求助10
6秒前
6秒前
xuerw发布了新的文献求助10
7秒前
神勇振家完成签到,获得积分20
7秒前
9秒前
周周发布了新的文献求助10
11秒前
翟老师发布了新的文献求助10
12秒前
12秒前
infinity完成签到 ,获得积分10
12秒前
12秒前
15秒前
领导范儿应助儿茶酚胺采纳,获得10
15秒前
123456发布了新的文献求助10
16秒前
16秒前
17秒前
顾矜应助郑雨霏采纳,获得10
17秒前
斯文完成签到,获得积分10
18秒前
18秒前
曾经如是完成签到,获得积分10
18秒前
liang应助谨慎灵萱采纳,获得10
19秒前
黑桃完成签到,获得积分10
19秒前
王红玉完成签到,获得积分10
19秒前
19秒前
20秒前
21秒前
liuziop完成签到,获得积分10
21秒前
21秒前
大模型应助冯成风采纳,获得10
21秒前
tachikoma应助ccqy采纳,获得10
22秒前
高分求助中
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218137
求助须知:如何正确求助?哪些是违规求助? 2867441
关于积分的说明 8156317
捐赠科研通 2534330
什么是DOI,文献DOI怎么找? 1366911
科研通“疑难数据库(出版商)”最低求助积分说明 644892
邀请新用户注册赠送积分活动 617922