Safe Human-Robot Collaboration via Collision Checking and Explicit Representation of Danger Zones

机器人 代表(政治) 背景(考古学) 计算机科学 人机交互 树遍历 碰撞 人工智能 模拟 计算机安全 算法 政治 政治学 法学 古生物学 生物
作者
Bakir Lačević,Andrea Maria Zanchettin,Paolo Rocco
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 846-861 被引量:4
标识
DOI:10.1109/tase.2022.3167772
摘要

This paper deals with safe human-robot collaboration in the context of speed and separation monitoring paradigm. The core of the approach is to continuously track the separation distance between the robot and the human. The robot speed is then adjusted according to the perceived distance so that it will be able to stop before eventually come into contact with the human. We present an approach that aims at maximizing the productivity of the robot, i.e., its speed, while keeping the prescribed safety requirements satisfied. The method is based on explicit representation of danger zones – regions around the robot, where safety requirements are violated. The motion is then generated such that the robot moves as fast as possible, while its danger zone still does not collide with human operators. The approach is validated within an experimental study. Note to Practitioners—This article was motivated by the problem of maximizing productivity of the robotic manipulator while ensuring the safety of human collaborator. The increase in productivity is achieved by a faster traversal of predefined paths without compromising the safety of the human, which is specifically defined by industrial standard. The approach requires limited knowledge on robot’s dynamical properties. More precisely, we only need the braking time as a “lumped” representation of robot’s inertia. The underlying optimization problem is conveniently resolved by introducing danger zones that allow for intuitive visualization and geometrical representation of the regions around the robot that must be avoided. On the other hand, the method assumes the representation of humans via typical geometric primitives, which can be obtained using of-the-shelf depth perception systems. The solution to the problem reduces to a repeated collision checking between danger zones and the human. Such an approach turns out to be suitable for real-time implementation due to availability of fast and efficient collision checking algorithms/libraries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助孔雀翎采纳,获得10
刚刚
小白完成签到,获得积分10
刚刚
兴奋芷发布了新的文献求助10
1秒前
FashionBoy应助阿泽采纳,获得10
2秒前
若什么至完成签到,获得积分10
2秒前
艺阳完成签到,获得积分10
2秒前
2秒前
彭于晏应助yyy采纳,获得10
2秒前
3秒前
李健春发布了新的文献求助10
3秒前
guyan发布了新的文献求助10
3秒前
南栀完成签到,获得积分10
3秒前
ZCL完成签到,获得积分10
3秒前
4秒前
NexusExplorer应助瞳梦采纳,获得20
4秒前
吉祥应助May采纳,获得30
5秒前
Sun发布了新的文献求助10
5秒前
tt发布了新的文献求助10
5秒前
6秒前
泥娃娃完成签到,获得积分10
6秒前
6秒前
7秒前
认真的灵竹完成签到 ,获得积分10
7秒前
舒服的曼云完成签到,获得积分10
7秒前
baekhyun发布了新的文献求助20
8秒前
8秒前
seven_yao完成签到,获得积分10
9秒前
9秒前
凯蒂晗晗发布了新的文献求助10
10秒前
10秒前
10秒前
orixero应助WWW采纳,获得10
10秒前
Lucas应助redred采纳,获得10
11秒前
yee发布了新的文献求助10
11秒前
匹诺曹发布了新的文献求助10
11秒前
11秒前
Yu完成签到,获得积分10
11秒前
大模型应助深海渔采纳,获得10
12秒前
哈喽酷狗发布了新的文献求助30
12秒前
screct完成签到,获得积分10
12秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147773
求助须知:如何正确求助?哪些是违规求助? 2798855
关于积分的说明 7831859
捐赠科研通 2455728
什么是DOI,文献DOI怎么找? 1306927
科研通“疑难数据库(出版商)”最低求助积分说明 627945
版权声明 601587