xViTCOS: Explainable Vision Transformer Based COVID-19 Screening Using Radiography

计算机科学 2019年冠状病毒病(COVID-19) 人工智能 深度学习 学习迁移 卷积神经网络 射线照相术 背景(考古学) 机器学习 计算机视觉 医学 疾病 放射科 传染病(医学专业) 病理 古生物学 生物
作者
Arnab Kumar Mondal,Arnab Bhattacharjee,Parag Singla,Prathosh AP
出处
期刊:IEEE Journal of Translational Engineering in Health and Medicine [Institute of Electrical and Electronics Engineers]
卷期号:10: 1-10 被引量:92
标识
DOI:10.1109/jtehm.2021.3134096
摘要

Objective: Since its outbreak, the rapid spread of COrona VIrus Disease 2019 (COVID-19) across the globe has pushed the health care system in many countries to the verge of collapse. Therefore, it is imperative to correctly identify COVID-19 positive patients and isolate them as soon as possible to contain the spread of the disease and reduce the ongoing burden on the healthcare system. The primary COVID-19 screening test, RT-PCR although accurate and reliable, has a long turn-around time. In the recent past, several researchers have demonstrated the use of Deep Learning (DL) methods on chest radiography (such as X-ray and CT) for COVID-19 detection. However, existing CNN based DL methods fail to capture the global context due to their inherent image-specific inductive bias. Methods: Motivated by this, in this work, we propose the use of vision transformers (instead of convolutional networks) for COVID-19 screening using the X-ray and CT images. We employ a multi-stage transfer learning technique to address the issue of data scarcity. Furthermore, we show that the features learned by our transformer networks are explainable. Results: We demonstrate that our method not only quantitatively outperforms the recent benchmarks but also focuses on meaningful regions in the images for detection (as confirmed by Radiologists), aiding not only in accurate diagnosis of COVID-19 but also in localization of the infected area. The code for our implementation can be found here - https://github.com/arnabkmondal/xViTCOS. Conclusion: The proposed method will help in timely identification of COVID-19 and efficient utilization of limited resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ei123发布了新的文献求助30
刚刚
刺槐完成签到,获得积分10
刚刚
zzx发布了新的文献求助10
刚刚
刚刚
T_MC郭发布了新的文献求助10
1秒前
优雅惜雪发布了新的文献求助10
1秒前
细腻的梦蕊应助干一户口采纳,获得10
1秒前
kaka完成签到,获得积分10
2秒前
兆锦momo完成签到,获得积分10
2秒前
小章发布了新的文献求助10
2秒前
yuujinnA发布了新的文献求助10
2秒前
执着的莆完成签到,获得积分10
3秒前
zw发布了新的文献求助10
3秒前
Lucas应助冰镇大西瓜采纳,获得10
4秒前
4秒前
4秒前
Hello应助meethaha采纳,获得10
5秒前
cy5982完成签到,获得积分10
5秒前
haha123完成签到,获得积分10
6秒前
在水一方应助信封采纳,获得10
6秒前
7秒前
智勇双全完成签到,获得积分10
7秒前
7秒前
逃亡的小狗完成签到,获得积分10
7秒前
轻雨发布了新的文献求助10
7秒前
一只小锦李完成签到 ,获得积分10
8秒前
迅速天空完成签到,获得积分10
8秒前
minzhao发布了新的文献求助10
8秒前
8秒前
爆米花应助阿怪采纳,获得10
9秒前
专注的映萱完成签到,获得积分20
9秒前
9秒前
9秒前
科研通AI5应助嘟噜采纳,获得10
9秒前
Hanyitong发布了新的文献求助30
9秒前
茶色玻璃发布了新的文献求助10
10秒前
制药小兵完成签到,获得积分10
10秒前
aaqw_8完成签到,获得积分10
10秒前
英俊的铭应助含蓄可乐采纳,获得20
10秒前
烟花应助hzr采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3581274
求助须知:如何正确求助?哪些是违规求助? 3150774
关于积分的说明 9484947
捐赠科研通 2852548
什么是DOI,文献DOI怎么找? 1568177
邀请新用户注册赠送积分活动 734562
科研通“疑难数据库(出版商)”最低求助积分说明 720699