Deep Reinforcement Learning-Based Driving Strategy for Avoidance of Chain Collisions and Its Safety Efficiency Analysis in Autonomous Vehicles

强化学习 计算机科学 避碰 马尔可夫决策过程 过程(计算) 马尔可夫链 增强学习 碰撞 人工神经网络 人工智能 马尔可夫过程 机器学习 计算机安全 数学 统计 操作系统
作者
Abu Jafar Md Muzahid,Syafiq Fauzi Kamarulzaman,Md. Arafatur Rahman,Ali Alenezi
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 43303-43319 被引量:6
标识
DOI:10.1109/access.2022.3167812
摘要

Vehicle control in autonomous traffic flow is often handled using the best decision-making reinforcement learning methods. However, unexpected critical situations make the collisions more severe and, consequently, the chain collisions. In this work, we first review the leading causes of chain collisions and their subsequent chain events, which might provide an indication of how to prevent and mitigate the crash severity of chain collisions. Then, we consider the problem of chain collision avoidance as a Markov Decision Process problem in order to propose a reinforcement learning-based decision-making strategy and analyse the safety efficiency of existing methods in driving security. To address this, A reward function is being developed to deal with the challenge of multiple vehicle collision avoidance. A perception network structure based on formation and on actor-critic methodologies is employed to enhance the decision-making process. Finally, in the safety efficiency analysis phase, we investigated the safety efficiency performance of the agent vehicle in both single-agent and multi-agent autonomous driving environments. Three state-of-the-art contemporary actor-critic algorithms are used to create an extensive simulation in Unity3D. Moreover, to demonstrate the accuracy of the safety efficiency analysis, multiple training runs of the neural networks in respect of training performance, speed of training, success rate, and stability of rewards with a trade-off between exploitation and exploration during training are presented. Two aspects (single-agent and multi-agent) have assessed the efficiency of algorithms. Every aspect has been analyzed regarding the traffic flows: (1) the controlling efficiency of unexpected traffic situations by the sudden slowdown, (2) abrupt lane change, and (3) smoothly reaching the destination. All the findings of the analysis are intended to shed insight on the benefits of a greater, more reliable autonomous traffic set-up for academics and policymakers, and also to pave the way for the actual carry-out of a driver-less traffic world.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东方巧曼完成签到,获得积分10
刚刚
刚刚
kelien1205关注了科研通微信公众号
1秒前
小二郎应助cici采纳,获得10
2秒前
大个应助破晓之照采纳,获得10
2秒前
占诗双发布了新的文献求助10
2秒前
张凤发布了新的文献求助10
2秒前
大个应助whale采纳,获得10
3秒前
4秒前
小小太阳发布了新的文献求助30
5秒前
合不着发布了新的文献求助50
5秒前
Lotus完成签到,获得积分10
5秒前
5秒前
5秒前
dada完成签到,获得积分10
6秒前
chenzi完成签到,获得积分10
6秒前
7秒前
陈丽君小弟完成签到,获得积分10
7秒前
泪流不止完成签到,获得积分10
7秒前
林十三发布了新的文献求助10
8秒前
西陆完成签到,获得积分10
8秒前
LLII完成签到,获得积分10
8秒前
高歌猛进完成签到,获得积分10
9秒前
星月相遂完成签到,获得积分10
9秒前
叶耶耶完成签到 ,获得积分10
9秒前
Lotus发布了新的文献求助10
9秒前
看双双完成签到,获得积分10
10秒前
yab完成签到 ,获得积分10
10秒前
舒心的秋荷完成签到,获得积分20
10秒前
lu周完成签到,获得积分10
10秒前
凤凰山发布了新的文献求助10
10秒前
燕子完成签到,获得积分10
11秒前
丘比特应助米兰采纳,获得10
12秒前
12秒前
冷酷紫蓝完成签到,获得积分10
12秒前
斯文败类应助科研通管家采纳,获得10
13秒前
寻道图强应助科研通管家采纳,获得30
13秒前
方赫然应助科研通管家采纳,获得10
13秒前
含蓄的易绿完成签到 ,获得积分10
13秒前
寻道图强应助科研通管家采纳,获得30
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303915
求助须知:如何正确求助?哪些是违规求助? 2938066
关于积分的说明 8486128
捐赠科研通 2612060
什么是DOI,文献DOI怎么找? 1426478
科研通“疑难数据库(出版商)”最低求助积分说明 662641
邀请新用户注册赠送积分活动 647276