亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Reinforcement Learning-Based Driving Strategy for Avoidance of Chain Collisions and Its Safety Efficiency Analysis in Autonomous Vehicles

强化学习 计算机科学 避碰 马尔可夫决策过程 过程(计算) 马尔可夫链 增强学习 碰撞 人工神经网络 人工智能 马尔可夫过程 机器学习 计算机安全 数学 统计 操作系统
作者
Abu Jafar Md Muzahid,Syafiq Fauzi Kamarulzaman,Md. Arafatur Rahman,Ali Alenezi
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 43303-43319 被引量:6
标识
DOI:10.1109/access.2022.3167812
摘要

Vehicle control in autonomous traffic flow is often handled using the best decision-making reinforcement learning methods. However, unexpected critical situations make the collisions more severe and, consequently, the chain collisions. In this work, we first review the leading causes of chain collisions and their subsequent chain events, which might provide an indication of how to prevent and mitigate the crash severity of chain collisions. Then, we consider the problem of chain collision avoidance as a Markov Decision Process problem in order to propose a reinforcement learning-based decision-making strategy and analyse the safety efficiency of existing methods in driving security. To address this, A reward function is being developed to deal with the challenge of multiple vehicle collision avoidance. A perception network structure based on formation and on actor-critic methodologies is employed to enhance the decision-making process. Finally, in the safety efficiency analysis phase, we investigated the safety efficiency performance of the agent vehicle in both single-agent and multi-agent autonomous driving environments. Three state-of-the-art contemporary actor-critic algorithms are used to create an extensive simulation in Unity3D. Moreover, to demonstrate the accuracy of the safety efficiency analysis, multiple training runs of the neural networks in respect of training performance, speed of training, success rate, and stability of rewards with a trade-off between exploitation and exploration during training are presented. Two aspects (single-agent and multi-agent) have assessed the efficiency of algorithms. Every aspect has been analyzed regarding the traffic flows: (1) the controlling efficiency of unexpected traffic situations by the sudden slowdown, (2) abrupt lane change, and (3) smoothly reaching the destination. All the findings of the analysis are intended to shed insight on the benefits of a greater, more reliable autonomous traffic set-up for academics and policymakers, and also to pave the way for the actual carry-out of a driver-less traffic world.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Gryphon完成签到,获得积分20
4秒前
李冰洋完成签到,获得积分10
4秒前
李冰洋发布了新的文献求助10
7秒前
研友_VZG7GZ应助李冰洋采纳,获得10
12秒前
yyds应助科研通管家采纳,获得100
16秒前
Ava应助科研通管家采纳,获得10
16秒前
ceeray23应助科研通管家采纳,获得50
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Criminology34应助科研通管家采纳,获得10
16秒前
17秒前
sam发布了新的文献求助10
21秒前
顾矜应助yuyu采纳,获得10
28秒前
sam完成签到,获得积分10
29秒前
31秒前
衣裳薄完成签到,获得积分10
31秒前
ForRITZ发布了新的文献求助10
36秒前
xingsixs完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
44秒前
9202211125发布了新的文献求助10
51秒前
Ethan发布了新的文献求助30
56秒前
59秒前
yuyu发布了新的文献求助10
1分钟前
1分钟前
Ethan完成签到,获得积分10
1分钟前
福娃哇完成签到 ,获得积分10
1分钟前
仰勒完成签到 ,获得积分10
1分钟前
orixero应助赵赵采纳,获得20
1分钟前
9202211125完成签到,获得积分10
1分钟前
喷火球完成签到,获得积分10
1分钟前
yuyu完成签到,获得积分10
1分钟前
Luckyz发布了新的文献求助10
1分钟前
zhaoeb完成签到,获得积分10
1分钟前
雪酪芋泥球完成签到 ,获得积分10
1分钟前
弹剑作歌发布了新的文献求助10
1分钟前
莎莎完成签到 ,获得积分10
1分钟前
LukeLion发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650677
求助须知:如何正确求助?哪些是违规求助? 4781288
关于积分的说明 15052487
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572338
邀请新用户注册赠送积分活动 1528481
关于科研通互助平台的介绍 1487341