Deep Reinforcement Learning-Based Driving Strategy for Avoidance of Chain Collisions and Its Safety Efficiency Analysis in Autonomous Vehicles

强化学习 计算机科学 避碰 马尔可夫决策过程 过程(计算) 马尔可夫链 增强学习 碰撞 人工神经网络 人工智能 马尔可夫过程 机器学习 计算机安全 数学 统计 操作系统
作者
Abu Jafar Md Muzahid,Syafiq Fauzi Kamarulzaman,Md. Arafatur Rahman,Ali Alenezi
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 43303-43319 被引量:6
标识
DOI:10.1109/access.2022.3167812
摘要

Vehicle control in autonomous traffic flow is often handled using the best decision-making reinforcement learning methods. However, unexpected critical situations make the collisions more severe and, consequently, the chain collisions. In this work, we first review the leading causes of chain collisions and their subsequent chain events, which might provide an indication of how to prevent and mitigate the crash severity of chain collisions. Then, we consider the problem of chain collision avoidance as a Markov Decision Process problem in order to propose a reinforcement learning-based decision-making strategy and analyse the safety efficiency of existing methods in driving security. To address this, A reward function is being developed to deal with the challenge of multiple vehicle collision avoidance. A perception network structure based on formation and on actor-critic methodologies is employed to enhance the decision-making process. Finally, in the safety efficiency analysis phase, we investigated the safety efficiency performance of the agent vehicle in both single-agent and multi-agent autonomous driving environments. Three state-of-the-art contemporary actor-critic algorithms are used to create an extensive simulation in Unity3D. Moreover, to demonstrate the accuracy of the safety efficiency analysis, multiple training runs of the neural networks in respect of training performance, speed of training, success rate, and stability of rewards with a trade-off between exploitation and exploration during training are presented. Two aspects (single-agent and multi-agent) have assessed the efficiency of algorithms. Every aspect has been analyzed regarding the traffic flows: (1) the controlling efficiency of unexpected traffic situations by the sudden slowdown, (2) abrupt lane change, and (3) smoothly reaching the destination. All the findings of the analysis are intended to shed insight on the benefits of a greater, more reliable autonomous traffic set-up for academics and policymakers, and also to pave the way for the actual carry-out of a driver-less traffic world.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
旅程发布了新的文献求助10
1秒前
阿欣完成签到,获得积分10
1秒前
YY发布了新的文献求助10
1秒前
2秒前
怕孤单的丁真完成签到,获得积分10
2秒前
yx_cheng应助sunsold采纳,获得30
2秒前
huangninghuang完成签到,获得积分10
3秒前
鱼跃完成签到,获得积分10
3秒前
研友_nvGWwZ发布了新的文献求助10
3秒前
4秒前
4秒前
鳗鱼盼夏完成签到,获得积分10
5秒前
5秒前
九月完成签到,获得积分10
5秒前
彭于晏应助烩面大师采纳,获得10
5秒前
能干的cen完成签到 ,获得积分10
5秒前
英俊的铭应助fs采纳,获得10
5秒前
丘比特应助fs采纳,获得10
5秒前
6秒前
可以发布了新的文献求助10
6秒前
科研通AI2S应助beikou采纳,获得10
6秒前
可爱丸子完成签到,获得积分10
6秒前
6秒前
7秒前
Ma完成签到,获得积分10
7秒前
Owen应助Robe采纳,获得10
8秒前
Wang发布了新的文献求助10
8秒前
所所应助简单幸福采纳,获得10
9秒前
FashionBoy应助YY采纳,获得10
10秒前
kirito发布了新的文献求助10
10秒前
Ethan完成签到,获得积分10
10秒前
zy_完成签到,获得积分10
10秒前
香蕉易形关注了科研通微信公众号
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
慕青应助Yeee采纳,获得10
12秒前
beituo完成签到,获得积分10
13秒前
13秒前
烂漫代曼完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582