肖特基势垒
光催化
工作职能
肖特基二极管
X射线光电子能谱
电子转移
沸石咪唑盐骨架
材料科学
光电子学
化学
化学工程
纳米技术
金属有机骨架
光化学
物理化学
催化作用
图层(电子)
二极管
生物化学
吸附
工程类
作者
Guojun Li,Shiwen Du,Ziwu Han,Yumin Wang,Siyi Zhang,Yi Xiong,Hu Xu,Pengfei Fang
标识
DOI:10.1016/j.apsusc.2022.153420
摘要
The well-designed interface plays a key role in enhancing the charge transfer kinetics. In this work, a three-dimensional CoSe2/Cd0.8Zn0.2S Schottky junction was successfully prepared using zeolitic imidazolate framework-67 (ZIF-67) as precursor material by in-situ chemistry synthetic strategies to improve the charge transfer kinetics. The photocatalytic H2 generation rate of 3.2%-CoSe2/Cd0.8Zn0.2S is 80 times higher than pristine Cd0.8Zn0.2S. The systematic characterization (XPS, TRPL, EPR, etc.) and DFT results show the improvement of photocatalytic performance derives from the formation of Schottky junction between CoSe2 and Cd0.8Zn0.2S. The well-designed and tight interface can facilitate electrons transfer from Cd0.8Zn0.2S to CoSe2, and Schottky barrier can suppress the electrons flow back to Cd0.8Zn0.2S, resulting in the high separation of charge carriers. On the other hand, the noble metal-free CoSe2 with larger specific surface area function as the electron acceptors and active sites for reducing H+ to H2 efficiently, thus in favor of obtaining the enhanced H2 generation performance. Combining the three-dimensional structure with Schottky junction, this work provides an effective strategy to prepare photocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI