Advances in Z‐scheme semiconductor photocatalysts for the photoelectrochemical applications: A review

太阳能 光电子学 光催化 异质结 分解水 可再生能源 材料科学 环境污染 能源消耗 计算机科学 工艺工程 环境科学 纳米技术 生化工程 电气工程 工程类 化学 环境保护 催化作用 生物化学
作者
Jiaxin Li,Hao Yuan,Wenjie Zhang,Bingjun Jin,Qi Feng,Jan Huang,Zhengbo Jiao
出处
期刊:Carbon energy [Wiley]
卷期号:4 (3): 294-331 被引量:90
标识
DOI:10.1002/cey2.179
摘要

Abstract With continuous consumption of nonrenewable energy, solar energy has been predicted to play an essential role in meeting the energy demands and mitigating environmental issues in the future. Despite being green, clean and pollution‐free energy, solar energy cannot be adopted directly as it cannot provide sufficiently high energy density to work in the absence of machinery. Thus, it is necessary to develop an effective strategy to convert and store solar energy into chemical energy to achieve social sustainable development using solar energy as the main power source. Photocatalysis, in which semiconductor photocatalysts play a key role, is one of the most promising candidates for realising the effective utilisation of sunlight in a green, low‐cost and environmentally friendly method. The photocatalytic efficiency of photocatalysts is considerably influenced by their compositions. Among the various heterostructures, Z‐scheme heterojunction is one of the most interesting architecture due to its outstanding performance and excellent artificial imitation of photosynthesis. Z‐scheme photocatalysts have attracted considerable attention in the past few decades. Herein, we review contemporary Z‐scheme systems, with a particular focus on mechanistic breakthroughs, and highlight current state‐of‐the‐art systems. Z‐type photocatalysts are classified as traditional, all‐solid‐state, direct Z‐schemes and S‐scheme photocatalysts. The morphology, characterisation and working mechanism of each type of Z‐scheme are discussed in detail. Furthermore, the applications of Z‐scheme in photoelectrochemical water splitting, nitrogen fixation, pollutant degradation and carbon dioxide reduction are illustrated. Finally, we outline the main challenges and potential advances in Z‐scheme architectures, as well as their future development directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
干净元槐发布了新的文献求助10
2秒前
LEMONS发布了新的文献求助10
3秒前
燕儿应助Diane01采纳,获得10
4秒前
最好的发布了新的文献求助10
7秒前
21完成签到 ,获得积分10
7秒前
zhanks发布了新的文献求助10
7秒前
wanci应助LEMONS采纳,获得10
9秒前
脑洞疼应助熊亚丹采纳,获得10
9秒前
qqq完成签到,获得积分10
10秒前
10秒前
kanglan完成签到,获得积分10
11秒前
给桃子完成签到,获得积分10
12秒前
lu完成签到,获得积分10
14秒前
缓激肽完成签到,获得积分10
15秒前
给桃子发布了新的文献求助10
16秒前
sissiarno应助GEOPYJ采纳,获得120
16秒前
18秒前
18秒前
20秒前
21秒前
王久久完成签到 ,获得积分10
22秒前
luckyru发布了新的文献求助10
24秒前
喜悦沛蓝发布了新的文献求助10
24秒前
26秒前
xuanyu应助18621058639采纳,获得10
27秒前
干净元槐完成签到,获得积分10
29秒前
哈哈哈哈发布了新的文献求助10
29秒前
lxy2002完成签到,获得积分10
31秒前
33秒前
33秒前
lxy2002发布了新的文献求助30
34秒前
支寄灵完成签到,获得积分10
35秒前
暖酒清风发布了新的文献求助10
36秒前
sunoopp发布了新的文献求助30
37秒前
37秒前
38秒前
zyt完成签到 ,获得积分10
38秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055401
求助须知:如何正确求助?哪些是违规求助? 2712227
关于积分的说明 7430195
捐赠科研通 2357037
什么是DOI,文献DOI怎么找? 1248528
科研通“疑难数据库(出版商)”最低求助积分说明 606737
版权声明 596093