Efficient modal-aware feature learning with application in multimodal hashing

计算机科学 人工智能 特征学习 特征(语言学) 机器学习 核(代数) 水准点(测量) 散列函数 情态动词 深度学习 利用 构造(python库) 模式 模式识别(心理学)
作者
Hanlu Chu,Haien Zeng,Hanjiang Lai,Yong Tang
出处
期刊:Intelligent Data Analysis [IOS Press]
卷期号:26 (2): 345-360
标识
DOI:10.3233/ida-215780
摘要

Many retrieval applications can benefit from multiple modalities, for which how to represent multimodal data is the critical component. Most deep multimodal learning methods typically involve two steps to construct the joint representations: 1) learning of multiple intermediate features, with each intermediate feature corresponding to a modality, using separate and independent deep models; 2) merging the intermediate features into a joint representation using a fusion strategy. However, in the first step, these intermediate features do not have previous knowledge of each other and cannot fully exploit the information contained in the other modalities. In this paper, we present a modal-aware operation as a generic building block to capture the non-linear dependencies among the heterogeneous intermediate features, which can learn the underlying correlation structures in other multimodal data as soon as possible. The modal-aware operation consists of a kernel network and an attention network. The kernel network is utilized to learn the non-linear relationships with other modalities. The attention network finds the informative regions of these modal-aware features that are favorable for retrieval. We verify the proposed modal-aware feature learning in the multimodal hashing task. The experiments conducted on three public benchmark datasets demonstrate significant improvements in the performance of our method relative to state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
0517完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
dxxcshin完成签到,获得积分10
1秒前
1秒前
2秒前
水123发布了新的文献求助10
2秒前
露露发布了新的文献求助10
3秒前
hey应助zake采纳,获得20
3秒前
江海小舟完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
贤惠的伟泽完成签到,获得积分10
5秒前
无奈擎苍完成签到,获得积分10
5秒前
lin完成签到,获得积分10
5秒前
勇者义彦发布了新的文献求助10
5秒前
科研通AI6应助三冬四夏采纳,获得10
6秒前
6秒前
6秒前
沉默的从安完成签到,获得积分10
7秒前
年糕.完成签到,获得积分10
7秒前
7秒前
受伤芝麻发布了新的文献求助10
7秒前
7秒前
7秒前
于沁冉完成签到,获得积分10
8秒前
8秒前
Zxc发布了新的文献求助20
8秒前
许进文发布了新的文献求助10
8秒前
嘿嘿发布了新的文献求助10
9秒前
9秒前
JING完成签到,获得积分10
9秒前
10秒前
于沁冉发布了新的文献求助10
10秒前
科研通AI2S应助111111采纳,获得10
10秒前
香蕉觅云应助现代老鼠采纳,获得10
11秒前
乐乐应助勇者义彦采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601254
求助须知:如何正确求助?哪些是违规求助? 4686675
关于积分的说明 14845664
捐赠科研通 4680054
什么是DOI,文献DOI怎么找? 2539261
邀请新用户注册赠送积分活动 1506128
关于科研通互助平台的介绍 1471283