过电位
催化作用
电负性
Atom(片上系统)
化学
密度泛函理论
结合能
氢
金属
氧化物
物理化学
无机化学
计算化学
原子物理学
有机化学
嵌入式系统
物理
电化学
计算机科学
电极
作者
Xing Cheng,Bo Xiao,Yanhui Chen,Yueshuai Wang,Lirong Zheng,Yue Lu,Hongyi Li,Ge Chen
标识
DOI:10.1021/acscatal.2c00891
摘要
Developing oxide supports for stabilizing single-atom catalysts enables more flexibility for tuning the electronic metal–support interactions (EMSIs) toward better catalytic activities. However, due to the electronegativity of oxygen anions, single-metal atoms often remain positively charged in these oxide supports and are poor at binding hydrogen species for the hydrogen evolution reaction (HER). Here, we report a ligand charge donation–acquisition balance strategy via an amorphous TiBxOy support to tune the EMSIs, which lead to the boosted HER mass activity of a single Pt atom catalyst. Based on spectroscopic characterizations, we found that Pt single atoms preferentially bonded with nearly neutral B atoms originating from TiB2-like species in the Ti–B–O framework rather than O anions. Density functional theory calculations reveal that due to the charge-transfer balance between B–O and B–Pt, the nucleophilicity of Pt was tuned to an optimum state, with an ideal hydrogen binding energy that benefits the HER. As a result, this Pt/TiBxOy catalyst achieves a high HER mass activity (37.8 A mg–1 Pt) and a turnover frequency (33.2 H2 s–1 Pt site–1) at an overpotential of 50 mV in an acid medium, outperforming commercial Pt/C by a factor of 34 and 33, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI