Operations (management) warp speed: Rapid deployment of hospital‐focused predictive/prescriptive analytics for the COVID‐19 pandemic

软件部署 工作量 分析 计算机科学 预测分析 大流行 决策支持系统 数据科学 运筹学 过程管理 2019年冠状病毒病(COVID-19) 运营管理 业务 数据挖掘 医学 工程类 病理 传染病(医学专业) 操作系统 疾病
作者
Pengyi Shi,Jonathan E. Helm,Christopher J. Chen,Jeff Lim,Rodney P. Parker,Troy Tinsley,Jacob Cecil
出处
期刊:Production and Operations Management [Wiley]
卷期号:32 (5): 1433-1452 被引量:14
标识
DOI:10.1111/poms.13648
摘要

At the onset of the COVID‐19 pandemic, hospitals were in dire need of data‐driven analytics to provide support for critical, expensive, and complex decisions. Yet, the majority of analytics being developed were targeted at state‐ and national‐level policy decisions, with little availability of actionable information to support tactical and operational decision‐making and execution at the hospital level. To fill this gap, we developed a multi‐method framework leveraging a parsimonious design philosophy that allows for rapid deployment of high‐impact predictive and prescriptive analytics in a time‐sensitive, dynamic, data‐limited environment, such as a novel pandemic. The product of this research is a workload prediction and decision support tool to provide mission‐critical, actionable information for individual hospitals. Our framework forecasts time‐varying patient workload and demand for critical resources by integrating disease progression models, tailored to data availability during different stages of the pandemic, with a stochastic network model of patient movements among units within individual hospitals. Both components employ adaptive tuning to account for hospital‐dependent, time‐varying parameters that provide consistently accurate predictions by dynamically learning the impact of latent changes in system dynamics. Our decision support system is designed to be portable and easily implementable across hospital data systems for expeditious expansion and deployment. This work was contextually grounded in close collaboration with IU Health, the largest health system in Indiana, which has 18 hospitals serving over one million residents. Our initial prototype was implemented in April 2020 and has supported managerial decisions, from the operational to the strategic, across multiple functionalities at IU Health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无限的芮发布了新的文献求助10
1秒前
2秒前
2秒前
梁大海完成签到,获得积分10
2秒前
gjq发布了新的文献求助10
3秒前
Lze驳回了大模型应助
3秒前
玛卡巴卡31完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
BenchYang发布了新的文献求助10
5秒前
上官若男应助addestay采纳,获得10
7秒前
自然墨镜发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
实验好难应助果果采纳,获得10
9秒前
10秒前
科研通AI5应助gjq采纳,获得10
11秒前
Owen应助小贾爱喝冰美式采纳,获得10
11秒前
1111发布了新的文献求助10
11秒前
Owen应助彩色的紫南采纳,获得10
12秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
zz发布了新的文献求助10
14秒前
zdesfsfa完成签到,获得积分10
15秒前
陶然共忘机完成签到 ,获得积分10
16秒前
kytlzq完成签到,获得积分10
17秒前
17秒前
丘比特应助不安一鸣采纳,获得10
17秒前
科研通AI5应助立军采纳,获得10
17秒前
欢喜小霸王完成签到,获得积分10
17秒前
调皮秋凌发布了新的文献求助10
19秒前
YX完成签到,获得积分10
19秒前
19秒前
汉堡包应助刻苦的源智采纳,获得10
20秒前
addestay完成签到 ,获得积分10
22秒前
23秒前
23秒前
量子星尘发布了新的文献求助10
25秒前
25秒前
sansansan发布了新的文献求助10
26秒前
26秒前
小猴同学完成签到 ,获得积分10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664299
求助须知:如何正确求助?哪些是违规求助? 3224405
关于积分的说明 9757262
捐赠科研通 2934339
什么是DOI,文献DOI怎么找? 1606816
邀请新用户注册赠送积分活动 758829
科研通“疑难数据库(出版商)”最低求助积分说明 735012