Heterogeneous graph neural networks with denoising for graph embeddings

计算机科学 理论计算机科学 嵌入 图形 图嵌入 拓扑图论 数据挖掘 人工智能 电压图 折线图
作者
Xinrui Dong,Yijia Zhang,Kuo Pang,Fei Chen,Mingyu Lu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:238: 107899-107899 被引量:8
标识
DOI:10.1016/j.knosys.2021.107899
摘要

With the increasing popularity of graph structures, Graph embedding, Which aims to project nodes into low dimensional space while preserving the topological structure information of graphs and the information of nodes themselves, Has attracted an increased amount of attention in recent years. most of the embedding methods based on heterogeneous graphs use a meta-path guided random walk to capture the semantic and structural correlation between different types of nodes in the graph. despite the success of the meta-path-guided heterogeneous graph embedding method, The choice of meta-path is still an open and challenging problem. the design of the meta-path scheme largely depends on domain knowledge. in this paper, We propose a heterogeneous graph neural network with denoising (HGNND) to handle the issue. considering that there are different types of nodes in heterogeneous graphs, And their features are usually distributed in different spaces, The HGNND projects features of different types of nodes into a common vector space. then, The whole heterogeneous graph is input into the graph neural network to aggregate the neighbor node information and capture the structure information of the heterogeneous graph. finally, The noise nodes that may affect the performance of the whole model are filtered out by the denoising operation. extensive experiments on three real-world datasets demonstrate that our proposed model achieves state-of-the-art performance, It further proves that the model can still effectively aggregate semantic information without using meta-paths.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无敌是多么寂寞完成签到,获得积分10
刚刚
秀丽的小懒虫完成签到,获得积分20
刚刚
康康发布了新的文献求助30
1秒前
张益权完成签到,获得积分10
1秒前
沧化完成签到,获得积分10
1秒前
1秒前
1秒前
星球日记发布了新的文献求助10
1秒前
哈哈发布了新的文献求助10
1秒前
汉堡包应助bxw采纳,获得10
3秒前
李爱国应助自觉士萧采纳,获得10
3秒前
4秒前
5秒前
敢超发布了新的文献求助10
5秒前
无聊先知发布了新的文献求助10
6秒前
7秒前
edtaa发布了新的文献求助30
7秒前
zz完成签到 ,获得积分10
8秒前
科研通AI5应助向聿采纳,获得10
8秒前
研新发布了新的文献求助10
8秒前
沉默的玻璃猪完成签到,获得积分10
9秒前
领导范儿应助Air采纳,获得10
9秒前
9秒前
Lucy完成签到,获得积分10
9秒前
cxt发布了新的文献求助10
10秒前
10秒前
11秒前
大个应助康康采纳,获得30
11秒前
搜集达人应助jjjwln采纳,获得10
13秒前
maox1aoxin应助敬老院N号采纳,获得40
13秒前
秋白华落霜完成签到,获得积分10
13秒前
随风完成签到,获得积分10
13秒前
万能图书馆应助念念采纳,获得30
13秒前
14秒前
聪慧千亦发布了新的文献求助10
14秒前
GGBO应助小欣6116采纳,获得10
14秒前
hahatosky完成签到,获得积分10
14秒前
2393843435发布了新的文献求助10
14秒前
葡萄发布了新的文献求助10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199