Neural generative model for clustering by separating particularity and commonality

聚类分析 计算机科学 人工智能 生成模型 自编码 推论 模式识别(心理学) 判别式 生成语法 分类器(UML) 混合模型 机器学习 人工神经网络 特征学习 代表(政治) 政治 法学 政治学
作者
Wenqing Wang,Junpeng Bao,Siyao Guo
出处
期刊:Information Sciences [Elsevier]
卷期号:589: 813-826 被引量:9
标识
DOI:10.1016/j.ins.2021.12.037
摘要

Learning discriminative representation is essential in many machine learning tasks. Each category has intrinsic and particular features related to the label. However, objects from different categories often share some common patterns that are independent of the label. Therefore, separating the particular and shared features will facilitate representation learning and other downstream tasks. In this study, we attempt to improve clustering accuracy by disentangling these two types of features. We introduce a generative model based on a neural network to explain observations according to the assumed underlying structures and to perform clustering simultaneously. Specifically, our proposed model, named the disentangling generative model for clustering (DGC), assumes that the observed data are generated from the concatenation of latent particular and common features that are subject to a Gaussian mixture distribution and standard Gaussian distribution, respectively. For the inference in DGC, each observation is encoded into two parts with different networks, which correspond to the approximate posterior over the particular and common features. The former is fed into a classifier, and the result serves as the clustering assignment of the observation. The DGC is optimized within the variational autoencoder framework. The empirical results show that the proposed method exhibits performance comparable with those of state-of-the-art methods. In addition, the DGC can generate class-specific samples without any label information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kxy完成签到,获得积分10
3秒前
3秒前
婧婧完成签到 ,获得积分10
3秒前
4秒前
5秒前
左友铭完成签到 ,获得积分10
5秒前
sweetbearm应助通~采纳,获得10
5秒前
AKLIZE完成签到,获得积分10
5秒前
刘大妮完成签到,获得积分10
6秒前
clean完成签到,获得积分20
7秒前
Lucas发布了新的文献求助10
7秒前
7秒前
朴实以松发布了新的文献求助10
7秒前
感谢橘子转发科研通微信,获得积分50
7秒前
围炉煮茶完成签到,获得积分10
8秒前
8秒前
云锋发布了新的文献求助10
9秒前
兴奋的问旋应助务实盼海采纳,获得10
9秒前
李秋静发布了新的文献求助10
9秒前
9秒前
无花果应助cookie采纳,获得10
10秒前
10秒前
斯文败类应助阳尧采纳,获得10
10秒前
11秒前
11秒前
abjz完成签到,获得积分10
11秒前
三千弱水为君饮完成签到,获得积分10
12秒前
12秒前
cata完成签到,获得积分10
12秒前
感谢79转发科研通微信,获得积分50
12秒前
12秒前
troubadourelf发布了新的文献求助10
13秒前
frank发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
感谢超帅冬易转发科研通微信,获得积分50
16秒前
16秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794