Neural generative model for clustering by separating particularity and commonality

聚类分析 计算机科学 人工智能 生成模型 自编码 推论 模式识别(心理学) 判别式 生成语法 分类器(UML) 混合模型 机器学习 人工神经网络 特征学习 代表(政治) 政治 法学 政治学
作者
Wenqing Wang,Junpeng Bao,Siyao Guo
出处
期刊:Information Sciences [Elsevier]
卷期号:589: 813-826 被引量:9
标识
DOI:10.1016/j.ins.2021.12.037
摘要

Learning discriminative representation is essential in many machine learning tasks. Each category has intrinsic and particular features related to the label. However, objects from different categories often share some common patterns that are independent of the label. Therefore, separating the particular and shared features will facilitate representation learning and other downstream tasks. In this study, we attempt to improve clustering accuracy by disentangling these two types of features. We introduce a generative model based on a neural network to explain observations according to the assumed underlying structures and to perform clustering simultaneously. Specifically, our proposed model, named the disentangling generative model for clustering (DGC), assumes that the observed data are generated from the concatenation of latent particular and common features that are subject to a Gaussian mixture distribution and standard Gaussian distribution, respectively. For the inference in DGC, each observation is encoded into two parts with different networks, which correspond to the approximate posterior over the particular and common features. The former is fed into a classifier, and the result serves as the clustering assignment of the observation. The DGC is optimized within the variational autoencoder framework. The empirical results show that the proposed method exhibits performance comparable with those of state-of-the-art methods. In addition, the DGC can generate class-specific samples without any label information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万信心发布了新的文献求助10
刚刚
煜清清发布了新的文献求助10
刚刚
Aoopiy发布了新的文献求助10
1秒前
1秒前
zake发布了新的文献求助20
1秒前
2秒前
2秒前
用户云清完成签到,获得积分10
2秒前
WWwww发布了新的文献求助10
2秒前
郝郝完成签到,获得积分10
3秒前
3秒前
爱吃巧乐兹完成签到,获得积分10
3秒前
万能图书馆应助HUAN采纳,获得10
3秒前
星星海发布了新的文献求助10
4秒前
ZuoqiHe应助鬼笔环肽采纳,获得10
4秒前
Jeremy发布了新的文献求助10
4秒前
bkagyin应助民谣采纳,获得10
5秒前
5秒前
玄风发布了新的文献求助10
5秒前
乐乐应助Ira1005采纳,获得10
5秒前
直率的鹭洋完成签到,获得积分10
5秒前
zy完成签到,获得积分10
6秒前
6秒前
共享精神应助科研小白采纳,获得10
6秒前
杪春完成签到 ,获得积分10
6秒前
5555发布了新的文献求助10
6秒前
7秒前
7秒前
天明完成签到,获得积分10
7秒前
三七发布了新的文献求助10
8秒前
8秒前
8秒前
wanci应助泽锦臻采纳,获得10
8秒前
茗泠发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
华仔应助血小板采纳,获得20
10秒前
123完成签到 ,获得积分10
10秒前
阿里嘎多发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594