Multifaceted 3D-QSAR analysis for the identification of pharmacophoric features of biphenyl analogues as aromatase inhibitors

数量结构-活动关系 药效团 化学 芳香化酶 立体化学 联苯 对接(动物) 计算化学 生物 有机化学 癌症 遗传学 医学 护理部 乳腺癌
作者
Laxmi Banjare,Yogesh Singh,Sant Kumar Verma,Atul Kumar Singh,Pradeep Kumar,Shashank Kumar,Akhlesh Kumar Jain,Suresh Thareja
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:41 (4): 1322-1341 被引量:5
标识
DOI:10.1080/07391102.2021.2019122
摘要

Aromatase, a cytochrome P450 enzyme, is responsible for the conversion of androgens to estrogens, which fuel the multiplication of cancerous cells. Inhibition of estrogen biosynthesis by aromatase inhibitors (AIs) is one of the highly advanced therapeutic approach available for the treatment of estrogen-positive breast cancer. Biphenyl moiety aids lipophilicity to the conjugated scaffold and enhances the accessibility of the ligand to the target. The present study is focused on the investigation of, the mode of binding of biphenyl with aromatase, prediction of ligand-target binding affinities, and pharmacophoric features essential for favorable for aromatase inhibition. A multifaceted 3D-QSAR (SOMFA, Field and Gaussian) along with molecular docking, molecular dynamic simulations and pharmacophore mapping were performed on a series of biphenyl bearing molecules (1–33) with a wide range of aromatase inhibitory activity (0.15–920 nM). Among the generated 3D-QSAR models, the Force field-based 3D-QSAR model (R2 = 0.9151) was best as compared to SOMFA and Gaussian Field (R2=0.7706, 0.9074, respectively). However, all the generated 3D-QSAR models were statistically fit, robust enough, and reliable to explain the variation in biological activity in relation to pharmacophoric features of dataset molecules. A four-point pharmacophoric features with three acceptor sites (A), one aromatic ring (R) features, AAAR_1, were obtained with the site and survival score values 0.890 and 4.613, respectively. The generated 3D-QSAR plots in the study insight into the structure–activity relationship of dataset molecules, which may help in the designing of potent biphenyl derivatives as newer inhibitors of aromatase.Communicated by Ramaswamy H. Sarma
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敏感的芷发布了新的文献求助10
刚刚
susan发布了新的文献求助10
刚刚
1秒前
李爱国应助轻松的贞采纳,获得10
1秒前
wz完成签到,获得积分10
2秒前
子川完成签到 ,获得积分10
2秒前
怕孤独的鹭洋完成签到,获得积分10
2秒前
3秒前
耍酷的夏云完成签到,获得积分10
3秒前
laodie发布了新的文献求助10
4秒前
4秒前
小达完成签到,获得积分10
4秒前
nenoaowu发布了新的文献求助10
4秒前
文章要有性价比完成签到,获得积分10
5秒前
俏皮半烟完成签到,获得积分10
5秒前
Aki发布了新的文献求助10
5秒前
111完成签到,获得积分10
7秒前
耗尽完成签到,获得积分10
7秒前
烂漫驳发布了新的文献求助10
9秒前
轻松的贞完成签到,获得积分10
10秒前
李健应助balzacsun采纳,获得10
11秒前
轻松的悟空完成签到 ,获得积分10
13秒前
susan完成签到,获得积分10
14秒前
0029完成签到,获得积分10
16秒前
Aki完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
19秒前
LXR完成签到,获得积分10
21秒前
thchiang发布了新的文献求助10
22秒前
李健应助北城采纳,获得10
22秒前
WDK发布了新的文献求助10
22秒前
23秒前
轻松的贞发布了新的文献求助10
23秒前
医学生Mavis完成签到,获得积分10
25秒前
nextconnie完成签到,获得积分10
25秒前
汉堡包应助yyj采纳,获得10
26秒前
zqh740发布了新的文献求助30
27秒前
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824