Dual-Network Collaborative Matrix Factorization for predicting small molecule-miRNA associations

矩阵分解 相似性(几何) 计算机科学 对偶(语法数字) 交叉验证 数据挖掘 基质(化学分析) 非负矩阵分解 特征(语言学) 模式识别(心理学) 人工智能 数学 哲学 艺术 文学类 物理 图像(数学) 特征向量 复合材料 材料科学 量子力学 语言学
作者
Shuhao Wang,Chun-Chun Wang,Li Huang,Lianying Miao,Xing Chen
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:15
标识
DOI:10.1093/bib/bbab500
摘要

MicroRNAs (miRNAs) play crucial roles in multiple biological processes and human diseases and can be considered as therapeutic targets of small molecules (SMs). Because biological experiments used to verify SM-miRNA associations are time-consuming and expensive, it is urgent to propose new computational models to predict new SM-miRNA associations. Here, we proposed a novel method called Dual-network Collaborative Matrix Factorization (DCMF) for predicting the potential SM-miRNA associations. Firstly, we utilized the Weighted K Nearest Known Neighbors (WKNKN) method to preprocess SM-miRNA association matrix. Then, we constructed matrix factorization model to obtain two feature matrices containing latent features of SM and miRNA, respectively. Finally, the predicted SM-miRNA association score matrix was obtained by calculating the inner product of two feature matrices. The main innovations of this method were that the use of WKNKN method can preprocess the missing values of association matrix and the introduction of dual network can integrate more diverse similarity information into DCMF. For evaluating the validity of DCMF, we implemented four different cross validations (CVs) based on two distinct datasets and two different case studies. Finally, based on dataset 1 (dataset 2), DCMF achieved Area Under receiver operating characteristic Curves (AUC) of 0.9868 (0.8770), 0.9833 (0.8836), 0.8377 (0.7591) and 0.9836 ± 0.0030 (0.8632 ± 0.0042) in global Leave-One-Out Cross Validation (LOOCV), miRNA-fixed local LOOCV, SM-fixed local LOOCV and 5-fold CV, respectively. For case studies, plenty of predicted associations have been confirmed by published experimental literature. Therefore, DCMF is an effective tool to predict potential SM-miRNA associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩霆发布了新的文献求助10
1秒前
1秒前
一坨发布了新的文献求助30
2秒前
2秒前
2秒前
美琦完成签到,获得积分10
3秒前
我睡觉的时候不困完成签到,获得积分10
3秒前
才露尖尖角完成签到,获得积分10
4秒前
小酒迟疑完成签到,获得积分10
4秒前
zzb发布了新的文献求助10
4秒前
spy发布了新的文献求助10
6秒前
6秒前
茜茜哥哥发布了新的文献求助10
7秒前
7秒前
六月的石头关注了科研通微信公众号
8秒前
万能图书馆应助leez采纳,获得10
8秒前
8秒前
CipherSage应助小阳采纳,获得10
10秒前
CY发布了新的文献求助10
11秒前
嘎吱脆发布了新的文献求助10
12秒前
15秒前
wq完成签到,获得积分10
15秒前
16秒前
新威宝贝完成签到,获得积分10
16秒前
17秒前
shaoming完成签到,获得积分10
18秒前
负责惊蛰完成签到 ,获得积分10
18秒前
扬帆起航完成签到 ,获得积分10
18秒前
18秒前
研友_VZG7GZ应助兆渊采纳,获得10
19秒前
spy完成签到,获得积分10
19秒前
SciGPT应助哈哈哈采纳,获得10
19秒前
Jing发布了新的文献求助10
20秒前
Lucas应助q792309106采纳,获得10
20秒前
领导范儿应助闪闪跳跳糖采纳,获得20
21秒前
xx关闭了xx文献求助
21秒前
壮观的擎发布了新的文献求助10
21秒前
aa121599发布了新的文献求助10
22秒前
希望天下0贩的0应助honey采纳,获得10
22秒前
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020