scGAC: a graph attentional architecture for clustering single-cell RNA-seq data

聚类分析 RNA序列 计算机科学 图形 建筑 计算生物学 人工智能 生物 理论计算机科学 遗传学 转录组 基因表达 基因 地理 考古
作者
Cheng Yi,Xiuli Ma
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (8): 2187-2193 被引量:21
标识
DOI:10.1093/bioinformatics/btac099
摘要

Abstract Motivation Emerging single-cell RNA sequencing (scRNA-seq) technology empowers biological research at cellular level. One of the most crucial scRNA-seq data analyses is clustering single cells into subpopulations. However, the high variability, high sparsity and high dimensionality of scRNA-seq data pose lots of challenges for clustering analysis. Although many single-cell clustering methods have been recently developed, few of them fully exploit latent relationship among cells, thus leading to suboptimal clustering results. Results Here, we propose a novel unsupervised clustering method, scGAC (single-cell Graph Attentional Clustering), for scRNA-seq data. scGAC firstly constructs a cell graph and refines it by network denoising. Then, it learns clustering-friendly representation of cells through a graph attentional autoencoder, which propagates information across cells with different weights and captures latent relationship among cells. Finally, scGAC adopts a self-optimizing method to obtain the cell clusters. Experiments on 16 real scRNA-seq datasets show that scGAC achieves excellent performance and outperforms existing state-of-art single-cell clustering methods. Availability and implementation Python implementation of scGAC is available at Github (https://github.com/Joye9285/scGAC) and Figshare (https://figshare.com/articles/software/scGAC/19091348). Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HYH发布了新的文献求助20
刚刚
Rinohalt发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
领导范儿应助通~采纳,获得10
2秒前
2秒前
fufufu123发布了新的文献求助10
2秒前
英姑应助猪猪hero采纳,获得10
2秒前
励志小薛发布了新的文献求助10
3秒前
怕孤独的从雪完成签到,获得积分20
3秒前
3秒前
joyce完成签到,获得积分10
3秒前
4秒前
xiaotian_fan发布了新的文献求助10
5秒前
sunlihao完成签到,获得积分10
5秒前
123发布了新的文献求助10
6秒前
悦耳水之发布了新的文献求助10
6秒前
garyaa发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
研友_LMNjkn完成签到,获得积分10
10秒前
Liu完成签到,获得积分10
10秒前
10秒前
夏日天空完成签到,获得积分10
11秒前
CodeCraft应助lkc采纳,获得10
11秒前
cheng发布了新的文献求助10
11秒前
Hello应助科研小白菜采纳,获得10
12秒前
Eve发布了新的文献求助10
12秒前
花见月开完成签到,获得积分10
13秒前
思源应助uu采纳,获得10
13秒前
共享精神应助喜悦成威采纳,获得20
14秒前
赵赵赵发布了新的文献求助10
14秒前
打打应助特兰克斯采纳,获得10
15秒前
15秒前
xtqgyy完成签到,获得积分10
15秒前
游尘完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794